首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seawater, atmospheric dimethylsulfide (DMS) and aerosol compounds, potentially linked with DMS oxidation, such as methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42?) were determined in the North Yellow Sea, China during July–August, 2006. The concentrations of seawater and atmospheric DMS ranged from 2.01 to 11.79 nmol l?1 and from 1.68 to 8.26 nmol m?3, with average values of 6.20 nmol l?1 and 5.01 nmol m?3, respectively. Owing to the appreciable concentration gradient, DMS accumulated in the surface water was transferred into the atmosphere, leading to a net sea-to-air flux of 6.87 μmol m?2 d?1 during summer. In the surface seawater, high DMS values corresponded well with the concurrent increases in chlorophyll a levels and a significant correlation was observed between integrated DMS and chlorophyll a concentrations. In addition, the concentrations of MSA and nss-SO42? measured in the aerosol samples ranged from 0.012 to 0.079 μg m?3 and from 3.82 to 11.72 μg m?3, with average values of 0.039 and 7.40 μg m?3, respectively. Based on the observed MSA, nss-SO42? and their ratio, the relative biogenic sulfur contribution was estimated to range from 1.2% to 11.5%, implying the major contribution of anthropogenic source to sulfur budget in the study area.  相似文献   

2.
A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw?1 h?1 (Washingtonia spp., palms) for isoprene and 9.56 μgC gdw?1 h?1 (Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw?1 h?1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250–640 μgC m?2 h?1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NOx, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NOx; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.  相似文献   

3.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

4.
The photochemical oxidation and dispersion of reduced sulfur compounds (RSCs: H2S, CH3SH, DMS, CS2, and DMDS) emitted from anthropogenic (A) and natural (N) sources were evaluated based on a numerical modeling approach. The anthropogenic emission concentrations of RSCs were measured from several sampling sites at the Donghae landfill (D-LF) (i.e., source type A) in South Korea during a series of field campaigns (May through December 2004). The emissions of natural RSCs in a coastal study area near the D-LF (i.e., source type N) were estimated from sea surface DMS concentrations and transfer velocity during the same study period. These emission data were then used as input to the CALPUFF dispersion model, revised with 34 chemical reactions for RSCs. A significant fraction of sulfur dioxide (SO2) was produced photochemically during the summer (about 34% of total SO2 concentrations) followed by fall (21%), spring (15%), and winter (5%). Photochemical production of SO2 was dominated by H2S (about 55% of total contributions) and DMS (24%). The largest impact of RSCs from source type A on SO2 concentrations occurred around the D-LF during summer. The total SO2 concentrations produced from source type N around the D-LF during the summer (a mean SO2 concentration of 7.4 ppbv) were significantly higher than those (≤0.3 ppbv) during the other seasons. This may be because of the high RSC and SO2 emissions and their photochemistry along with the wind convergence.  相似文献   

5.
The effect of elemental carbon (EC) on global as well as regional climate forcing is potentially very important. However, the EC data for northeastern U.S. is sparse. Daily EC concentrations, [EC], and [SO4] were measured in the northeastern U.S. at a regionally representative rural site, Whiteface Mountain (WFM; 44.366°N, 73.903°W, 1.5 km amsl, above mean sea level), New York (NY), for 1997. The air mass origin was determined using 6-h backward in time air trajectories obtained from the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT 4). [EC] and [SO4] were highly variable and influenced by synoptic–scale meteorology (rainy vs dry periods). The maximum daily [EC] and [SO4] were 364 ± 55 and 28,800 ± 3000 ng m?3, respectively. [EC] and [SO4] also showed seasonal variations at WFM. Occurrences of high daily [EC] were mainly in spring months, while peak daily [SO4] concentrations occurred in summer months. This behavior of aerosols is due to the fact that the sources of EC and SO4 are not the same and also due to the enhanced photochemical activity during summer months that increased the production of SO4 from SO2. High [EC] and [SO4] values were associated with westerly air flow from the industrialized Midwestern U.S. Sector analysis using HYSPLIT 4 air trajectories showed that regions lying between the southwest and northwest of the WFM contributed 81% and 83% of the [EC] and [SO4], respectively. The monthly net direct radiative forcing for shortwave (SW) due to EC and SO4 aerosols at the top of the atmosphere (TOA) varied from ?0.05 to ?0.50 W m?2, with an annual average of ?0.20 ± 0.15 W m?2 that gives a net cooling effect. Average net radiative forcing at WFM for clear sky is lower than the global average radiative forcing reported by IPCC (Foster and Ramaswamy, 2007).  相似文献   

6.
One-year quantitative chemical data set consisting of water-soluble constituents (NH4+, Na+, K+, Mg2+, Ca2+, Cl?, NO3?, SO42? and HCO3?), crustal and trace elements (Al, Fe, Ca, Mg, K, Mn, Zn, Pb) and carbonaceous species (OC, EC) in ambient aerosols, collected over an urban site located in a high-dust semi-arid region of western India, reveals excellent linear relationship (r2 = 0.92; slope = 0.96 ± 0.05) between gravimetrically assessed TSP (total suspended particulates) and chemically analyzed aerosol mass. The TSP abundance ranging from 60 to 250 μg m?3, over a period of 12 months (January–December), is dominated by mineral dust (~70%); whereas contribution from sea-salts, anthropogenic and carbonaceous species exhibits significant temporal variability depending upon the wind regimes. The mineral dust is enriched in Ca, Mg and Fe with respect to upper continental crust (UCC); whereas Zn and Pb exhibit a characteristic anthropogenic source and high enrichment factors. The carbonaceous species show significant seasonality; with dominance of OC (range: 4.6–28 μg m?3; average: 12.8 μg m?3; SD: 6.8) and minor contribution from EC (range: 0.3–4.4 μg m?3; average: 2.4 μg m?3; SD: 1.4). The observed concentrations are significantly lower than those reported for the metro cities in South Asia but the OC/EC ratios (range: 4.3–35; average: 8.3; SD: 5.7) are significantly higher than the characteristic ratio (~2–4) reported for the urban atmosphere. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric chemistry and climate change. This study could also be useful in understanding the physical and optical aerosol properties documented from the same site and thus, in validating regional climate models.  相似文献   

7.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in Huangshi, central China, from March 2012 to February 2013 and were analyzed for dicarboxylic acids (diacids) and related compounds (DARCs). Oxalic acid (C2; 416 ng m?3) was the most abundant species, followed by phthalic (Ph; 122 ng m?3), terephthalic (tPh; 116 ng m?3), succinic (C4; 70.4 ng m?3), azelaic (C9; 67.9 ng m?3), and adipic (C6; 57.8 ng m?3) acids. Relatively high abundances of Ph and tPh differed from the distribution in urban and marine aerosols, indicating contributions from nearby anthropogenic sources. Glyoxylic acid (ωC2; 41.4 ng m?3) was the dominant oxoacid, followed by 9-oxononanoic (ωC9; 40.8 ng m?3) and pyruvic (Pyr; 24.1 ng m?3) acids. Glyoxal (Gly; 35.5 ng m?3) was the dominant α-dicarbonyl. Highest average concentrations were found for C2, ωC2, and C9 in autumn, for C4, for Pyr and C6 in spring, for Ph, ωC9, and Gly in summer, whereas the lowest values were observed in winter. Seasonal variations and correlation coefficients of DARCs demonstrate that both primary emissions and secondary production are important sources. Principal component analysis of selected DARCs species suggests that a mixing of air masses from anthropogenic and biogenic sources contribute to the Huangshi aerosols.

Implications: Both primary emissions and secondary production are important sources of diacids and related compounds in PM2.5 from Huangshi, central China. Principal component analysis of selected diacids in Huangshi aerosols suggests that mixing of air masses from anthropogenic and biogenic sources contribute to ambient aerosols in central China.  相似文献   


8.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

9.
To improve our understanding of the mechanisms of particulate sulfur formation (non sea-salt sulfate, nss-SO42−) and methanesulfonate (MSx used here to represent the sum of gaseous methanesulfonic acid, MSA, and particulate methanesulfonate, MS) in the eastern Mediterranean and to evaluate the relative contribution of biogenic and anthropogenic sources to the S budget, a chemical box model coupled offline with an aerosol–cloud model has been used.Based on the measurements of gaseous dimethyl sulfide (DMS) and methanesulfonic acid (MSA) and the MSA sticking coefficient determined during the Mediterranean Intensive Oxidant Study (MINOS) experiment, the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to be about 0.3%. Consequently, MSA production from gas-phase oxidation of DMS is too small to explain the observed levels of MS. On the other hand, heterogeneous reactions of dimethyl sulfoxide (DMSO) and its gas-phase oxidation product methanesulfinic acid (MSIA) can account for most of the observed MS levels. The modelling results indicate that about 80% of the production of MS can be attributed to heterogeneous reactions.Observed submicron nss-SO42− levels can be fully explained by homogeneous (photochemical) gas-phase oxidation of sulfur dioxide (SO2) to sulfuric acid (H2SO4), which is subsequently scavenged by (mainly submicron) aerosol particles. The predominant oxidant during daytime is hydroxyl radical (OH) showing very high peak levels in the area during summer mostly under cloudless conditions. Therefore, during summer in the east Mediterranean, heterogeneous sulfate production appears to be negligible. This result is of particular interest for sulfur abatement strategy. On the other hand only about 10% of the supermicron nss-SO42− can be explained by condensation of gas-phase H2SO4, the rest must be formed via heterogeneous pathways.Marine biogenic sulfur emissions contribute up to 20% to the total oxidized sulfur production (SO2 and H2SO4) in good agreement with earlier estimates for the area.  相似文献   

10.
A total of 16 boundary layer (BL) DMS flux values were derived from flights over the Southern Ocean. DMS flux values were derived from airborne observations recorded during the Aerosol Characterization Experiment (ACE 1). The latitude range covered was 55°S–40°S. The method of evaluation was based on the mass-balance photochemical-modeling (MBPCM) approach. The estimated flux for the above latitude range was 0.4–7.0 μmol m−2 d−1. The average value from all data analyzed was 2.6±1.8 μmol m−2 d−1. A comparison of the MBPCM methodology with several other DMS flux methods (e.g., ship and airborne based) revealed reasonably good agreement in some cases and significant disagreement in other cases. Considering the limited number of cases compared and the fact that conditions for the comparisons were far from ideal, it is not possible to conclude that major agreement or differences have been established between these methods. A major result from this study was the finding that DMS oxidation is a major source of BL SO2 over the Southern Ocean. Model simulations suggest that, on average, the conversion efficiency is 0.7 or higher, given a lifetime for SO2 of ∼1 d. A comparison of two sulfur case studies, one based on DMS–SO2 data generated on the NCAR C-130 aircraft, the other based on data recorded on the NOAA ship Discoverer, revealed qualitative agreement in finding that DMS was a major source of Southern Ocean SO2. On the other hand, significant disagreement was found regarding the DMS/SO2 conversion efficiency (e.g., 0.3–0.5 versus 0.7–0.9). Although yet unknown factors, such as vertical mixing, may be involved in reducing the level of disagreement, it does appear at this time that some significant portion of this difference may be related to systematic differences in the two different techniques employed to measure SO2. It would seem prudent, therefore, that further instrument intercomparison SO2 studies be considered. It also would be desirable to stage new intercomparison activity between the MBPCM flux approach and the air-to-sea gradient as well as other flux methods, but under far more favorable conditions.  相似文献   

11.
The distribution of dimethylsuphide (DMS) and its precursor dimethylsulphoniopropionate, in both particulate (DMSPp) and dissolved fractions (DMSPd) was surveyed along estuarine water profiles of Canal de Mira (Ria de Aveiro, Portugal), on 45 occasions during one year. The field campaigns revealed pronounced gradients, which were to some extent interpreted with reference to supporting hydrographic parameters like salinity, temperature and chlorophyll a. Surface water concentrations showed a clear seasonal variation with peak values during the warmer months. Mean summer concentrations for DMS, DMSPp and DMSPd, were, respectively, a factor of 1.8, 1.9 and 2.9 times higher than winter concentrations. Surface water concentration was the main factor controlling DMS emissions into the atmosphere, which were estimated to be, as a mean, 5.4 and 27.3 nmol m-2 h-1 for winter and summer, respectively. In addition, DMS fluxes from two intertidal mud flat sites in Canal de Mira were examined monthly over a year. Average emission rates were a factor of 2–5 times higher than those estimated for estuarine waters and revealed strong seasonal variations, with summer peaks apparently related to ambient temperature. The relative contribution of estuarine waters and mud flats for local DMS budget is discussed in terms of tidal cycles and exposed surface area.  相似文献   

12.
Carbonaceous aerosol concentrations were determined for total suspended particle samples collected from Muztagh Ata Mountain in western China from December 2003 to February 2006. Elemental carbon (EC) varied from 0.004 to 0.174 μg m?3 (average = 0.055 μg m?3) while organic carbon (OC) ranged from 0.12 to 2.17 μg m?3 and carbonate carbon (CC) from below detection to 3.57 μg m?3. Overall, EC was the least abundant fraction of carbonaceous species, and the EC concentrations approached those in some remote polar areas, possibly representing a regional background. Low EC and OC concentrations occurred in winter and spring while high CC in spring and summer was presumably due to dust from the Taklimakan desert, China. OC/EC ratios averaged 10.0, and strong correlations between OC and EC in spring–winter suggest their cycles are coupled, but lower correlations in summer–autumn suggest influences from biogenic OC emissions and secondary OC formation. Trajectory analyses indicate that air transported from outside of China brings ~0.05 μg m?3 EC, ~0.42 μg m?3 OC, and ~0.10 μg m?3 CC to the site, with higher levels coming from inside China. The observed EC was within the range of loadings estimated from a glacial ice core, and implications of EC-induced warming for regional climate and glacial ice dynamics are discussed.  相似文献   

13.
From September 2006 to October 2007 turbulent fluxes of carbon dioxide were measured at an urban tower station (26 m above ground level, z/zh = 1.73) in Essen, Germany, using the eddy covariance technique. The site was located at the border between a public park area (70 ha) in the south–west of the station and suburban/urban residential as well as light commercial areas in the north and east of the tower. Depending on the land-use two different sectors (park and urban) were identified showing distinct differences in the temporal evolution of the surface-atmosphere exchange of CO2. While urban fluxes appear to be governed by anthropogenic emissions from domestic heating and traffic (average flux 9.3 μmol m?2 s?1), the exchange of CO2 was steered by biological processes when the park contributed to the flux footprint. The diurnal course during the vegetation period exhibited negative daytime fluxes up to ?10 μmol m?2 s?1 on average in summer. Nevertheless, with a mean of 0.8 μmol m?2 s?1 park sector fluxes were slightly positive, thus no net carbon uptake by the surface occurred throughout the year.In order to sum the transport of CO2 a gap-filling procedure was performed by means of artificial neural network generalisation. Using additional meteorological inputs the daily exchange of CO2 was reproduced using radial basis function networks (RBF). The resulting yearly sum of 6031 g m?2 a?1 indicates the entire study site to be a considerable source of CO2.  相似文献   

14.
Size-resolved chemical compositions of non-refractory submicron aerosols were measured using a quadrupole Aerodyne aerosol mass spectrometer at a rural site near Guangzhou in the Pearl River Delta (PRD) of China in the summer of 2006. Two cases characterized as the outflows from the PRD urban region with plumes of high SO2 concentration were investigated. The evolution of sulfate size distributions was observed on a timescale of several hours. Namely mass concentrations of sulfate in the condensation mode (with vacuum aerodynamic diameters (Dva) < 300 nm) increased at a rate of about 0.17–0.37 ppbv h?1 during the daytime. This finding was consistent with the sulfuric acid production rates of about 0.17–0.3 ppbv h?1, as calculated from the observed gas-phase concentrations of OH (~3.3 × 106–1.7 × 107 cm?3) and SO2 (~3–21.2 ppbv). This implies that the growth of sulfate in the condensation mode was mainly due to gas-phase oxidation of SO2. The observed rapid increase was caused mainly by the concurrent high concentrations of OH and SO2 in the air mass. The evolution of the mass size distributions of m/z 44, a tracer for oxygenated organic aerosol (OOA), was very similar to that of sulfate. The mass loadings of m/z 44 were strongly correlated with those of sulfate (r2 = 0.99) in the condensation mode, indicating that OOA might also be formed by the gas-phase oxidation of volatile organic compound (VOC) precursors. It is likely that sulfate and OOA were internally mixed throughout the whole size range in the air mass.  相似文献   

15.
Airborne measurements of gaseous and particulate sulfur and nitrogen pollutants were made in southwestern Kentucky on the afternoon of October 21, 1979. Back-trajectory analysis indicates that the sampled air parcel moved over northern Florida, Alabama, and western Tennessee during the two days prior to sampling. Before moving over Florida, the air parcel was over the Atlantic Ocean for at least five days. Analytical long-range transport (LRT) model predictions based on anthropogenic emissions account for only about 75% of the airborne measured concentrations of 14.7 μg m?3 for SO2 and 4.8 μg m?3 for SO4 2?. The remaining 25 % is thought to be due to biogenic sulfur emissions from the extensive wetland areas along the Gulf Coast.

Forward-trajectory analysis indicates that the air parcel moved to the Adirondack Mountains of New York State 24 hours after sampling. Model predictions indicate that SO2 and SO4 2? mean layer concentrations at the Adirondacks were 24 and 16 μg?3, respectively. Almost half of this sulfur was estimated to come from emissions in the heavily industrialized region along the Ohio River Valley.

Further comparisons used a measurement data base obtained in southeastern Canada and the state of Arkansas during August 1976. An air parcel was tracked for seven days as it entered the north central United States, stagnated over the lower midwest, and then moved to eastern Canada. Model predictions were in substantial agreement with regional SO4 2? concentrations measured at a number of ground-level sites. Average SO4 2? concentrations measured in central Arkansas on August 10, 1976 were 20 μ m?3 vs. a modeled value of 19 μ m?3. Average SO4 2? concentrations measured in Nova Scotia four days later were 22 μg?3 vs. a modeled estimate of 24 μg?3.  相似文献   

16.
Measurements of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate mercury (PHg) have been conducted at Lulin Atmospheric Background Station (LABS) in Taiwan since April 2006. This was the first long-term free tropospheric atmospheric Hg monitoring program in the downwind region of East Asia, which is a major Hg emission source region. Between April 13, 2006 and December 31, 2007, the mean concentrations of GEM, RGM, and PHg were 1.73 ng m?3, 12.1 pg m?3, and 2.3 pg m?3, respectively. A diurnal pattern was observed for GEM with afternoon peaks and nighttime lows, whereas the diurnal pattern of RGM was opposite to that of GEM. Spikes of RGM were frequently observed between midnight and early morning with concurrent decreases in GEM and relative humidity and increases in O3, suggesting the oxidation of GEM and formation of RGM in free troposphere (FT). Upslope movement of boundary layer (BL) air in daytime and subsidence of FT air at night resulted in these diurnal patterns. Considering only the nighttime data, which were more representative of FT air, the composite monthly mean GEM concentrations ranged between 1.06 and 2.06 ng m?3. Seasonal variation in nighttime GEM was evident, with lower concentrations usually occurring in summer when clean marine air masses prevailed. Between fall and spring, air masses passed the East Asian continent prior to reaching LABS, contributing to the elevated GEM concentrations. Analysis of GEM/CO correlation tends to support the argument. Good GEM/CO correlations were observed in fall, winter, and spring, suggesting influence of anthropogenic emission sources. Our results demonstrate the significance of East Asian Hg emissions, including both anthropogenic and biomass burning emissions, and their long-range transport in the FT. Because of the pronounced seasonal monsoon activity and the seasonal variation in regional wind field, export of the Asian Hg emissions to Taiwan occurs mainly during fall, winter, and spring.  相似文献   

17.
Knowledge of the distribution and sources of black carbon (BC) is essential to understanding its impact on radiative forcing and the establishment of a control strategy. In this study, we analyze atmospheric BC and its relationships with fine particles (PM2.5) and trace gases (CO, NOy and SO2) measured in the summer of 2005 in two areas frequently influenced by plumes from Beijing and Shanghai, the two largest cities in China. The results revealed different BC source characteristics for the two megacities. The average concentration of BC was 2.37 (±1.79) and 5.47 (±4.00) μg m?3, accounting for 3.1% and 7.8% of the PM2.5 mass, in Beijing and Shanghai, respectively. The good correlation between BC, CO and NOy (R2 = 0.54–0.77) and the poor correlation between BC and SO2 suggest that diesel vehicles and marine vessels are the dominant sources of BC in the two urban areas during summer. The BC/CO mass ratio in the air mass from Shanghai was found to be much higher than that in the air mass from Beijing (0.0101 versus 0.0037 ΔgBC/ΔgCO), which is attributable to a larger contribution from diesel burning (diesel-powered vehicles and marine vessels) in Shanghai. Based on the measured ratios of BC/CO and annual emissions of CO, we estimate that the annual emissions of BC in Beijing and Shanghai are 9.51 Gg and 18.72 Gg, respectively. The improved emission rates of BC will help reduce the uncertainty in the assessment of the impact of megacities on regional climate.  相似文献   

18.
Simultaneous daily measurements of water-soluble organic nitrogen (WSON), ammonium and nitrate were made between July and November 2008 at a rural location in south-east Scotland, using a ‘Cofer’ nebulizing sampler for the gas phase and collection on an open-face PTFE membrane for the particle phase. Average concentrations of NH3 were 82 ± 17 nmol N m?3 (error is s.d. of triplicate samples), while oxidised N concentrations in the gas phase (from trapping NO2 and HNO3) were smaller, at 2.6 ± 2.2 nmol N m?3, and gas-phase WSON concentrations were 18 ± 11 nmol N m?3. The estimated collection efficiency of the nebulizing samplers for the gas phase was 88 (±8) % for NH3, 37 (±16) % for NO2 and 57 (±7) % for WSON; reported average concentrations have not been corrected for sampling efficiency. Concentrations in the particle phase were smaller, except for nitrate, at 21 ± 9, 10 ± 6 and 8 ± 9 nmol N m?3, respectively. The absence of correlation in either phase between WSON and either (NH3 + NH4+) or NO3? concentrations suggests atmospheric WSON has diverse sources. During wet days, concentrations of gas and particle-phase inorganic N were lower than on dry days, whereas the converse was true for WSON. These data represent the first reports of simultaneous measurements of gas and particle phase water-soluble nitrogen compounds in rural air on a daily basis, and show that WSON occurs in both phases, contributing 20–25% of the total water-soluble nitrogen in air, in good agreement with earlier data on the contribution of WSON to total dissolved N in rainfall in the UK.  相似文献   

19.
Size-fractionated particles were collected at two sites from July 2004 to April 2006 in Shanghai. The mercury in particles was extracted and divided operationally into four species: exchangeable particulate mercury (EXPM), HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury. The total particulate Hg concentration during the study period ranged from 0.07 ng m?3 to 1.45 ng m?3 with the average 0.56 ± 0.22 ng m?3 at site 1, while 0.20 ng m?3–0.47 ng m?3 with the average 0.33 ± 0.09 ng m?3 at site 2, which is far higher than some foreign cities and comparable to some cities with heavy air pollution in China. The Hg mass content also displayed evident size distribution, with higher value in PM1.6–3.7, somewhat higher or lower than the source profile. EXAM was only found in the summer, HPM have higher percentage in summer and fall rather than in winter and spring. The different mercury species showed different correlation to temperature, relative humidity, wind speed. HPM positively depends on temperature at both sites which implies the importance of mercury transformation on particles. In foggy days TPM increased greatly, but HPM didn't vary greatly as anticipated. Instead, RPM gained a distinguished increase. It demonstrated that aqueous reaction and complex heterogenic reactions in droplet might happen in acidic environment. The correlation of mercury with other pollutants including SO2, NO2, CO and PM10 varies with the different mercury forms. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT) model was used to back trace air mass at different representative days and results indicated that transportation from Huabei Plain will increase mercury concentration in winter and fall to some extent. The possible existing compounds and their atmospheric behavior of HPM, EPM and RPM were calculated and the compared to analyze its implication on atmospheric mercury cycle.  相似文献   

20.
A gas monitoring system based on broadband absorption spectroscopic techniques in the ultraviolet region is described and tested. The system was employed in real-time continuous concentration measurements of sulfur dioxide (SO2) and nitric oxide (NO) from a 220-ton h?1 circulating fluidized bed (CFB) boiler in Shandong province, China. The emission coefficients (per kg of coal and per kWh of electricity) and the total emission of the two pollutant gases were evaluated. The measurement results showed that the emission concentrations of SO2 and NO from the CFB boiler fluctuated in the range of 750–1300 mg m?3 and 100–220 mg m?3, respectively. Compared with the specified emission standards of air pollutants from thermal power plants in China, the values were generally higher for SO2 and lower for NO. The relatively high emission concentrations of SO2 were found to mainly depend on the sulfur content of the fuel and the poor desulfurization efficiency. This study indicates that the broadband UV spectroscopy system is suitable for industrial emission monitoring and pollution control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号