首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of a condensed version of the SAPRC-07 mechanism, designated CS07A, is described. It is comparable in size to CB05 and was derived directly from detailed SAPRC-07, which serves as the basis for its predictive capability and evaluation against chamber data. It incorporates the more condensed and approximate peroxy radical lumped operator method employed in SAPRC-99, and condensations involving removing or lumping less reactive compounds, lumping some product species in isoprene or aromatic mechanisms with other species with similar mechanisms using reactivity weighting, removing some compounds and reactions that are rapidly reversed, and using fewer model species to represent emitted alkanes and similar species. It gives predictions of O3, total PANs and OH radicals that are very close to the standard SAPRC-07 mechanism for airshed models used as the starting point, but predicts about 15% more H2O2. Use of CS07A is suitable for models where the priority is O3 formation, while the less condensed version should be used if more accurate hydroperoxide predictions are a priority.  相似文献   

2.
The photooxidation of fuel vapour was investigated in a smog chamber and simulated using three chemical mechanisms, the Master Chemical Mechanism (MCMv3.1), SAPRC-99 and the Carbon Bond chemical mechanism (CB05). Three varieties of fuel were used, unleaded petrol (ULP) and two ULP-ethanol blends which contained 5% and 10% ethanol (E5, E10). The fuel vapours were introduced into the chamber using two methods, by injecting the vapours from wholly evaporated fuel directly, and by injecting the headspace vapour from fuel equilibrated at 38 °C. The chamber experiments were simulated using the selected mechanisms and comparisons made with collected experimental data.The SAPRC-99 mechanism reproduced Δ(O3–NO) more accurately for almost all fuel types and injection modes, with negligible model error for both injection modes. The average model error for MCM simulations was ?16% and for CB05 the average model error was ?34%. The predictions for the CB05 mechanism varied depending on injection mode, the Δ(O3–NO) model error for wholly evaporated experiments was ?44%, compared to ?24% for headspace vapour experiments. The difference in aromatic content between experiments of different injection modes was likely to be the cause of the difference in model error for CB05. The model error for all headspace experiments was dependent upon the initial carbon monoxide concentrations.The results for Δ(O3–NO) were matched by the prediction of other key products, with formaldehyde predicted to within 20% by both SAPRC and the MCM. The addition of ethanol to the base SAPRC mechanism altered the predictions of Δ(O3–NO) by less than 2%. Changes observed in the concentrations of formaldehyde and acetaldehyde were consistent with the expected yields from ethanol oxidation.  相似文献   

3.
The updated SAPRC-07 mechanism was evaluated against data from experiments performed in the CSIRO smog chamber. The mechanism predictions have been compared to experimental results as well as predictions by SAPRC-99.Experiments were performed using either toluene or m-xylene in the presence of NOx at sub-0.1 ppmv concentrations. For the majority of m-xylene experiments, the modelled Δ(O3–NO) concentration was within 20% of observed values for both SAPRC mechanisms. However during the oxidation of toluene the production of radicals was poorly predicted, with final Δ(O3–NO) concentration under-predicted by up to 60%. The predictions of major oxidants from isoprene oxidation were in good agreement with observed values. For the NOx-limited conditions however, the ozone concentration predicted by both mechanisms were under-predicted by approximately 20% in the five experiments tested.The performance of the SAPRC-07 mechanism was also evaluated against twelve evaporated fuel experiments. Two types of evaporative mode experiments were performed: headspace evaporated fuel and wholly evaporated fuel. The major difference was a significantly higher concentration of aromatic hydrocarbons and larger alkane products in wholly evaporated fuels. For headspace evaporated fuel experiments both SAPRC mechanisms were in good agreement with experimental results. For wholly evaporated experiments the average Δ(O3–NO) model error was ?25% with SAPRC-07 compared to less than ?5% for SAPRC-99. Updates to the photolysis data for dicarbonyls, the light source used and the experimental conditions under which these experiments were performed are possible causes for the discrepancy between SAPRC-99 and -07 predictions for wholly evaporated experiments.  相似文献   

4.
Measurements of OH, H2SO4, and MSA at South Pole (SP) Antarctica were recorded as a part of the 2003 Antarctic Chemistry Investigation (ANTCI 2003). The time period 22 November, 2003–2 January, 2004 provided a unique opportunity to observe atmospheric chemistry at SP under both natural conditions as well as those uniquely defined by a solar eclipse event. Results under natural solar conditions generally confirmed those reported previously in the year 2000. In both years the major chemical driver leading to large scale fluctuations in OH was shifts in the concentration levels of NO. Like in 2000, however, the 2003 observational data were systematically lower than model predictions. This can be interpreted as indicating that the model mechanism is still missing a significant HOx sink reaction(s); or, alternatively, that the OH calibration source may have problems. Still a final possibility could involve the integrity of the OH sampling scheme which involved a fixed building site. As expected, during the peak in the solar eclipse both NO and OH showed large decreases in their respective concentrations. Interestingly, the observational OH profile could only be approximated by the model mechanism upon adding an additional HOx radical source in the form of snow emissions of CH2O and/or H2O2. This would lead one to think that either CH2O and/or H2O2 snow emissions represent a significant HOx radical source under summertime conditions at SP. Observations of H2SO4 and MSA revealed both species to be present at very low concentrations (e.g., 5 × 105 and 1 × 105 molec cm?3, respectively), but similar to those reported in 2000. The first measurements of SO2 at SP demonstrated a close coupling with the oxidation product H2SO4. The observed low concentrations of MSA appear to be counter to the most recent thinking by glacio-chemists who have suggested that the plateau's lower atmosphere should have elevated levels of MSA. We speculate here that the absence of MSA may reflect efficient atmospheric removal mechanisms for this species involving either dynamical and/or chemical processes.  相似文献   

5.
Bromine chemistry in the marine boundary layer is recognized to play an important role through catalytic ozone destruction, changes to the atmospheric oxidising capacity (by changing the OH/HO2 and NO/NO2 ratio) and oxidation of compounds such as dimethyl sulphide (DMS). However, the chemistry of bromine in polluted environments is not well understood and its effects are thought to be inhibited by reactions involving NOx (NO2 & NO). This paper describes long-path Differential Optical Absorption Spectroscopy (DOAS) observations of bromine oxide (BrO) at a semi-polluted coastal site in Roscoff, France. Significant concentrations of BrO (up to 7.5 ± 1.0 pptv) were measured during daytime, indicating the presence of unknown sources or efficient recycling of reactive bromine from bromine nitrate (BrONO2), which should be the major reservoir for bromine in a high NOx environment. These measurements indicate that bromine chemistry can play an important role in polluted environments.  相似文献   

6.
The chemical mechanisms describing the photo-oxidation of isoprene in current Chemistry Transport Models (CTMs) have been intercompared in a series of box model experiments. The mechanisms ranged in size and complexity from ~600 reactions to ~25 reactions. The box model experiments covered two isoprene emission strengths over a broad range of NO emissions to assess the performances of the mechanisms over the spectrum of atmospherically relevant conditions. There was some variability in the simulated oxidation rates of isoprene and formation rates of ozone. The variability in performance is a consequence of the details of the underlying chemistry as represented in the mechanisms, and of the different assumptions and approximations made in mechanism reduction. These differences are illustrated and discussed for a series of species involved in the degradation of isoprene and the ozone formation mechanism, namely: HOx radicals; organic peroxy radicals (RO2); hydroperoxides; oxidised organic nitrogen compounds; and major carbonyl products. The results also confirm that all the considered isoprene mechanisms are unable to generate/recycle HOx at the rates needed to match recently reported observations at locations characterized by low levels of NOx.  相似文献   

7.
The oxidation capacity of the highly polluted urban area of Santiago de Chile has been evaluated during a winter measurement campaign from May 25 to June 07, 2005, with the results compared and contrasted with those previously evaluated during a summer campaign from March 8 to 20, 2005. The OH radical budget was evaluated in both campaigns employing a simple quasi-photostationary state model (PSS) constrained with simultaneous measurements of HONO, HCHO, O3, NO, NO2, j(O1D), j(NO2), 13 alkenes and meteorological parameters. In addition, a zero dimensional photochemical box model based on the Master Chemical Mechanism (MCMv3.1) has been used for the analysis of the radical budgets and concentrations of OH, HO2 and RO2. Besides the above parameters, the MCM model has been constrained by the measured CO and other volatile organic compounds (VOCs) including alkanes and aromatics. Total production and destruction rates of OH and HO2 in winter are about two times lower than that during summer. Simulated OH levels by both PSS and MCM models are similar during the daytime for both winter and summer indicating that the primary OH sources and sinks included in the simple PSS model are predominant. On a 24 h basis, HONO photolysis was shown to be the most important primary OH radical source comprising 81% and 52% of the OH initiation rate during winter and summer, respectively followed by alkene ozonolysis (12.5% and 29%), photolysis of HCHO (6.1% and 15%), and photolysis of O3 (<1% and 4%), respectively. During both winter and summer, there was a balance between the OH secondary production (HO2 + NO) and destruction (OH + VOCs) showing that initiation sources of RO2 and HO2 are no net OH initiation sources. This result was found to be fulfilled also for all other studies investigated. Seasonal impacts on the radical budgets are also discussed.  相似文献   

8.
An updated version of the SAPRC-99 gas-phase atmospheric chemical mechanism, designated SAPRC-07, is described. The rate constants and reactions have been updated based on current data and evaluations, the aromatics mechanisms have been reformulated and are less parameterized, chlorine chemistry has been added, the method used to represent peroxy reactions has been reformulated to be more appropriate for modeling gas-phase secondary organic aerosol precursors, and representations for many types of VOCs have been added or improved. This mechanism was evaluated against the result of ~2400 environmental chamber experiments carried out in 11 different environmental chambers, including experiments to test mechanisms for over 110 types of VOCs. The performance in simulating the chamber data was generally satisfactory for most types of VOCs but some biases were seen in simulations of some types of experiments. The mechanism was used to derive updated MIR and other ozone reactivity scales for almost 1100 types of VOCs, though in most cases the changes in MIR values relative to SAPRC-99 were not large. This mechanism update results in somewhat lower predictions of ozone in one-day ambient model scenarios under low VOC/NOx conditions. The files needed to implement the mechanism and additional documentation is available at the SAPRC mechanism web site at http://www.cert.ucr.edu/~carter/SAPRC.  相似文献   

9.
A detailed chemical box model has been constructed based on a comprehensive chemical mechanism (the Master Chemical Mechanism) to investigate indoor air chemistry in a typical urban residence in the UK. Unlike previous modelling studies of indoor air chemistry, the mechanism adopted contains no simplifications such as lumping or the use of surrogate species, allowing more insight into indoor air chemistry than previously possible. The chemical mechanism, which has been modified to include the degradation reactions of key indoor air pollutants, contains around 15,400 reactions and 4700 species. The results show a predicted indoor OH radical concentration up to 4.0×105 molecule cm−3, only a factor of 10–20 less than typically observed outdoors and sufficient for significant chemical cycling to take place. Concentrations of PAN-type species and organic nitrates are found to be important indoors, reaching concentrations of a few ppb. Sensitivity tests highlight that the most crucial parameters for modelling the concentration of OH are the light-intensity levels and the air exchange rate. Outdoor concentrations of O3 and NOX are also important in determining radical concentrations indoors. The reactions of ozone with alkenes and monoterpenes play a major role in producing new radicals, unlike outdoors where photolysis reactions are pivotal radical initiators. In terms of radical propagation, the reaction of HO2 with NO has the most profound influence on OH concentrations indoors. Cycling between OH and RO2 is dominated by reaction with the monoterpene species, whilst alcohols play a major role in converting OH to HO2. Surprisingly, the absolute reaction rates are similar to those observed outdoors in a suburban environment in the UK during the summer. The results from this study highlight the importance of tailoring a model for its particular location and the need for future indoor air measurements of radical species, nitrated species such as PANs and organic nitrates, photolysis rates of key species over the range of wavelengths observed indoors and concurrent measurements of outdoor air pollutant concentrations.  相似文献   

10.
We present one of the most comprehensive studies of night-time radical chemistry to date, from the Tropospheric ORganic CHemistry experiment (TORCH) in the summer of 2003. TORCH provided a wealth of measurements with which to study the oxidizing capacity of the atmosphere. The measurements provided input to a zero-dimensional box model which has been used to study night-time radical chemistry during the campaign. Average night-time predicted concentrations of OH (2.6 × 105 molecule cm?3), HO2 (2.9 × 107 molecule cm?3) and [HO2+ΣRO2] radicals (2.2 × 108 molecule cm?3) were an order of magnitude smaller than those predicted during the daytime. The model under-predicted the night-time measurements of OH, HO2 and [HO2+ΣRO2] radicals, on average by 41%, 16% and 8% respectively. Whilst the model captured the broad features of night-time radical behaviour, some of the specific features that were observed are hard to explain. A rate of radical production assessment was carried out for the whole campaign between the hours of 00:00 and 04:00. Whilst radical production was limited owing to the absence of photolytic reactions, production routes via the reactions of alkenes with O3 provided an effective night-time radical source. Nitrate radical concentrations were predicted to be 0.6 ppt on average with a peak of 18 ppt on August 9th during a polluted heat wave period. Overall, the nitrate radical contributes about a third of the total initiation via RO2, mostly through reaction with alkenes.  相似文献   

11.
Two different steady-state methods are applied to calculate OH radical concentrations based on the rates of known source and sink processes. The first method, which calculates only OH radical concentrations from measured data including HO2 gives good correlation with measured OH concentrations but overpredicts by 30%. The second method applied calculates OH, HO2 and RO2 radical concentrations simultaneously. This second method overestimates the measured concentrations of OH by almost 3 times. This apparent overprediction may be a result of calculated concentrations of HO2 which appear too high and may be indicative of a gap in our understanding of the relevant peroxy radical chemistry or a result of the limited peroxy radical chemistry assumed by the method.  相似文献   

12.
Boundary layer concentrations of hydroxyl (OH) and hydroperoxyl (HO2) radicals were measured at 1180 m elevation in a mountainous, forested region of north-western Greece during the AEROsols formation from BIogenic organic Carbon (AEROBIC) field campaign held in July–August 1997. In situ measurements of OH radicals were made by laser-induced fluorescence (LIF) at low pressure, exciting in the (0, 0) band of the A–X system at 308 nm. HO2 radicals were monitored by chemical titration to OH upon the addition of NO, with subsequent detection by LIF. The instrument was calibrated regularly during the field campaign, and demonstrated a sensitivity towards OH and HO2 of 5.2×105 and 2.4×106 molecule cm−3, respectively, for a signal integration period of 2.5 min and a signal-to-noise ratio of 1. Diurnal cycles of OH and HO2 were measured on 10 days within a small clearing of a forest of Greek Fir (Abies Borisi-Regis). In total 4165 OH data points and 1501 HO2 data points were collected at 30 s intervals. Noon-time OH and HO2 concentrations were between 4–12×106 and 0.4–9×108 molecule cm−3, respectively. The performance of the instrument is evaluated, and the data are interpreted in terms of correlations with controlling variables. A significant correlation (r2=0.66) is observed between the OH concentration and the rate of photolysis of ozone, J(O1D). However, OH persisted into the early evening when J(O1D) had fallen to very low values, consistent with the modelling study presented in the following paper (Carslaw et al., 2001, OH and HO2 radical chemistry in a forest region of north-western Greece. Atmospheric Environment 35, 4725–4737) that predicts a significant radical source from the ozonolysis of biogenic alkenes. Normalisation of the OH concentrations for variations in J(O1D) revealed a bell-shaped dependence of OH upon NOx (NO+NO2), which peaked at [NOx] ∼1.75 ppbv. The diurnal variation of HO2 was found to be less correlated with J(O1D) compared to OH.  相似文献   

13.
The significance of heterogeneous mechanisms in controlling gas-phase NOx (NO, NO2) mixing ratios in polluted urban air, especially during nighttime, is not well established. Several recent studies have suggested that carbon soot can provide an effective surface for mediating the inter conversion among several NOy members. However, a number of such reactions reported in the literature have widely varying reaction probabilities and often conflicting pathways. We evaluated several of these reactions and choose the NO2 conversion to HONO on the surface of soot particles for further analysis with a box photochemical model. These calculations show that the conversion of NO2 to HONO on particle surfaces produces a large, measurable signal (up to several parts per billion) in nighttime HONO mixing ratios. Inclusion of this reaction was also shown to have significant impacts on ozone, OH and HO2 in the polluted planetary boundary layer (PBL). The sensitivity of these results to the different reaction rate probabilities (γ) and particle surface areas was also examined. Results are then evaluated to find the combination of γ and surface areas that would mostly likely occur in the PBL within the limitations of the model.  相似文献   

14.
This paper explores several aspects of the chemistry of a forested region in north-western Greece, from data collected during the AEROBIC97 campaign. An observationally constrained box model has been constructed to enable comparisons between modelled concentrations of OH and HO2 and those determined by the fluorescence assay by gas expansion (FAGE) technique. These results represent the first comparison of measured and modelled OH concentrations in such an environment. The modelled OH concentrations are, on average,∼50% of those measured (range of 16–61%) over 4 days of model and measurement comparison. Possible reasons for the model-measurement discrepancy are discussed. A rate of production analysis illustrates the dominance of isoprene and the monoterpenes on OH loss, as well as the significance of the ozonolysis of biogenic species as an OH source. The measured and modelled [HO2]/[OH] ratio averaged between 11:00 and 15:00 h is much higher than has been found previously for similar NOx concentrations,∼75 and 340, respectively, cf. 10–20. The high ratio reflects the rapid recycling through the OH–HO2 oxidation chain, involving biogenic species. The high biogenic concentrations result in a midday OH lifetime of∼0.15 s. Finally, for the conditions encountered during the campaign, there is high net photochemical ozone production, peaking at∼20 ppbv h−1 around 09:00 h.  相似文献   

15.
In this study, we present the response of model results to different scientific treatments in an effort to quantify the uncertainties caused by the incomplete understanding of mercury science and by model assumptions in atmospheric mercury models. Two sets of sensitivity simulations were performed to assess the uncertainties using modified versions of CMAQ-Hg in a 36-km Continental United States domain. From Set 1 Experiments, it is found that the simulated mercury dry deposition is most sensitive to the gaseous elemental mercury (GEM) oxidation product assignment, and to the implemented dry deposition scheme for GEM and reactive gaseous mercury (RGM). The simulated wet deposition is sensitive to the aqueous Hg(II) sorption scheme, and to the GEM oxidation product assignment. The inclusion of natural mercury emission causes a small increase in GEM concentration but has little impact on deposition. From Set 2 Experiments, it is found that both dry and wet depositions are sensitive to mercury chemistry. Change in model mercury chemistry has a greater impact on simulated wet deposition than on dry deposition. The kinetic uncertainty of GEM oxidation by O3 and mechanistic uncertainty of Hg(II) reduction by aqueous HO2 pose the greatest impact. Using the upper-limit kinetics of GEM–O3 reaction or eliminating aqueous Hg(II)–HO2 reaction results in unreasonably high deposition and depletion of gaseous mercury in the domain. Removing GEM–OH reaction is not sufficient to balance the excessive mercury removal caused by eliminating the HO2 mechanism. Field measurements of mercury dry deposition, better quantification of mercury air-surface exchange and further investigation of mercury redox chemistry are needed for reducing model uncertainties and for improving the performance of atmospheric mercury models.  相似文献   

16.
Both similarities and differences in summertime atmospheric photochemical oxidation appear in the comparison of four field studies: TEXAQS2000 (Houston, 2000), NYC2001 (New York City, 2001), MCMA2003 (Mexico City, 2003), and TRAMP2006 (Houston, 2006). The compared photochemical indicators are OH and HO2 abundances, OH reactivity (the inverse of the OH lifetime), HOx budget, OH chain length (ratio of OH cycling to OH loss), calculated ozone production, and ozone sensitivity. In terms of photochemical activity, Houston is much more like Mexico City than New York City. These relationships result from the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx), which are comparable in Houston and Mexico City, but much lower in New York City. Compared to New York City, Houston and Mexico City also have higher levels of OH and HO2, longer OH chain lengths, a smaller contribution of reactions with NOx to the OH reactivity, and NOx-sensitivity for ozone production during the day. In all four studies, the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) are significant, if not dominant, HOx sources. A problematic result in all four studies is the greater OH production than OH loss during morning rush hour, even though OH production and loss are expected to always be in balance because of the short OH lifetime. The cause of this discrepancy is not understood, but may be related to the under-predicted HO2 in high NOx conditions, which could have implications for ozone production. Three photochemical indicators show particularly high photochemical activity in Houston during the TRAMP2006 study: the long portion of the day for which ozone production was NOx-sensitive, the calculated ozone production rate that was second only to Mexico City's, and the OH chain length that was twice that of any other location. These results on photochemical activity provide additional support for regulatory actions to reduce reactive VOCs in Houston in order to reduce ozone and other pollutants.  相似文献   

17.
An interpretative modeling analysis is conducted to simulate the diurnal variations in OH and HO2+RO2 observed at Summit, Greenland in 2003. The main goal is to assess the HOx budget and to quantify the impact of snow emissions on ambient HOx as well as on CH2O and H2O2. This analysis is based on composite diurnal profiles of HOx precursors recorded during a 3-day period (July 7–9), which were generally compatible with values reported in earlier studies. The model simulations can reproduce the observed diurnal variation in HO2+RO2 when they are constrained by observations of H2O2 and CH2O. By contrast, model predictions of OH were about factor of 2 higher than the observed values. Modeling analysis of H2O2 suggests that its distinct diurnal variation is likely controlled by snow emissions and loss by deposition and/or scavenging. Similarly, deposition and/or scavenging sinks are needed to reproduce the observed diel profile in CH2O. This study suggests that for the Summit 2003 period snow emissions contribute ∼25% of the total CH2O production, while photochemical oxidation of hydrocarbon appears to be the dominant source. A budget assessment of HOx radicals shows that primary production from O(1D)+H2O and photolysis of snow emitted precursors (i.e., H2O2 and CH2O) are the largest primary HOx sources at Summit, contributing 41% and 40%, respectively. The snow contribution to the HOx budget is mostly in the form of emissions of H2O2. The dominant HOx sink involves the HO2+HO2 reaction forming H2O2, followed by its deposition to snow. These results differ from those previously reported for the South Pole (SP), in that primary production of HOx was shown to be largely driven by both the photolysis of CH2O and H2O2 emissions (46%) with smaller contributions coming from the oxidation of CH4 and the O(1D)+H2O reaction (i.e., 27% each). In sharp contrast to the findings at Summit in 2003, due to the much higher levels of NOx, the SP HOx sinks are dominated by HOx–NOx reactions, leading to the formation and deposition of HNO3 and HO2NO2. Thus, a comparison between SP and Summit studies suggests that snow emissions appear to play a prominent role in controlling primary HOx production in both environments. However, as regards to maintaining highly elevated levels of OH, the two environments differ substantially. At Summit the elevated rate for primary production of HOx is most important; whereas, at SP it is the rapid recycling of the more prevalent HO2 radical, through reaction with NO, back to OH that is primarily responsible.  相似文献   

18.
In the OZIPP (ozone isopleth plotting package, developed by United States Environmental Protection Agency) a number of model specific assumptions with respect to chemical and physical processes are made. These assumptions are introduced into an alternative model developed at AERE Harwell, United Kingdom, in which a detailed chemistry and mixture of organic emissions is included. The impact on the AERE Harwell model results of the assumptions made in OZIPP of omitting ground removal of ozone (O3) and peroxyacetylnitrate (PAN) and of employing an incomplete PAN chemistry and adopting a reaction rate coefficient of the key reaction NO + HO2 → NO2 + OH which is a factor 10 lower than the accepted value, are discussed. The composition of the organic emissions is an important model parameter, and it is shown how grouping of nonmethane hydrocarbon (NMHC) emissions into a small group of NMHC thought to be representative, often implies that O3 and other pollutants are overestimated. The O3 isopleth diagram for London constructed using the AERE Harwell model gives a somewhat different picture from that obtained with OZIPP. OZIPP in general predicts that NOx control or combined hydrocarbon(HC) and NOx control is efficient with respect to O3 reduction whilst the AERE Harwell model predicts that HC control alone usually is more efficient than combined HC and NOx control. Furthermore NOx control alone may often increase the O3 burden downwind in the AERE Harwell model.  相似文献   

19.
Condensed atmospheric photooxidation mechanisms for isoprene   总被引:1,自引:0,他引:1  
Two condensed mechanisms for the atmospheric reactions of isoprene, which differ in the number of species used to represent isoprene's reactive products, have been developed for use in ambient air quality modehng. They are based on a detailed isoprene mechanism that has recently been developed and extensively evaluated against environmental chamber data. The new condensed mechanisms give very close predictions to those of the detailed mechanism for ozone, OH radicals, nitric acid, H2O2, formaldehyde, total PANS, and for incremental effects of isoprene on ozone formation in one day simulations. The effects of the condensations become somewhat greater in multi-day simulations, particularly in cases where NO3 reactions are important at nighttime, but the ozone predictions are still very close. On the other hand, the SAPRC-90, RADM-2, and Carbon Bond IV isoprene mechanisms give quite different predictions of these quantities. It is recommended that the new mechanisms replace those currently used in airshed simulations where isoprene emissions are important.  相似文献   

20.
Nitrous acid is an important component of nighttime N-oxide chemistry, and provides a significant source of both OH and NO in polluted urban air masses shortly after sunrise. Several recent studies have called for new sources of HONO to account for daytime levels much higher than are consistent with current understanding. However, measurement of HONO is problematic, with most in-situ techniques reporting higher values than simultaneous optical measurements by long-path DOAS, especially during daytime. The discrepancy has been attributed to positive interference in the in-situ techniques, negative interference in DOAS retrievals, the difficulty of comparing the different air masses sampled by the methods, or combinations of these.During August and September 2006, HONO mixing ratios from collocated long-path DOAS and automated mist-chamber/ion chromatograph (MC/IC) systems ranged from several ppbv during morning rush hour to daytime minima near 100 pptv. Agreement between the two techniques was excellent across this entire range during many days, showing that both instruments accurately measured HONO during this campaign. A small bias towards higher LP-DOAS observations at night can be attributed to slow vertical mixing leading to pronounced HONO profiles. A positive daytime bias of the MC/IC instrument during several days in late August/early September was correlated with photochemically produced compounds such as ozone, HNO3 and HCHO, but not with NO2, NOx, HO2NO2, or the NO2 photolysis rate. While an interferant could not be identified organic nitrites appear a possible explanation for our observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号