首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Personal exposure to particulate matter of aerodynamic diameter under 2.5 μm (PM2.5) was monitored using a DustTrak nephelometer. The battery-operated unit, worn by an adult individual for a period of approximately one year, logged integrated average PM2.5 concentrations over 5 min intervals. A detailed time-activity diary was used to record the experimental subject’s movement and the microenvironments visited. Altogether 239 days covering all the months (except April) were available for the analysis. In total, 60 463 acceptable 5-min averages were obtained. The dataset was divided into 7 indoor and 4 outdoor microenvironments. Of the total time, 84% was spent indoors, 10.9% outdoors and 5.1% in transport. The indoor 5-min PM2.5 average was higher (55.7 μg m?3) than the outdoor value (49.8 μg m?3). The highest 5-min PM2.5 average concentration was detected in restaurant microenvironments (1103 μg m?3), the second highest 5-min average concentration was recorded in indoor spaces heated by stoves burning solid fuels (420 μg m?3). The lowest 5-min mean aerosol concentrations were detected outdoors in rural/natural environments (25 μg m?3) and indoors at the monitored person’s home (36 μg m?3). Outdoor and indoor concentrations of PM2.5 measured by the nephelometer at home and during movement in the vicinity of the experimental subject’s home were compared with those of the nearest fixed-site monitor of the national air quality monitoring network. The high correlation coefficient (0.78) between the personal and fixed-site monitor aerosol concentrations suggested that fixed-site monitor data can be used as proxies for personal exposure in residential and some other microenvironments. Collocated measurements with a reference method (β-attenuation) showed a non-linear systematic bias of the light-scattering method, limiting the use of direct concentration readings for exact exposure analysis.  相似文献   

2.
Fine particulate matter (PM2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM2.5 infiltration efficiencies (Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (~65%) of the indoor PM2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM2.5-levoglucosan correlations (r ≤ 0.19) suggested that wood smoke was not a major indoor PM2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.  相似文献   

3.
An apartment bedroom located in a residential area of Aveiro (Portugal) was selected with the aim of characterizing the cellulose content of indoor aerosol particles. Two sets of samples were taken: (1) PM10 collected simultaneously in indoor and outdoor air; (2) PM10 and PM2.5 collected simultaneously in indoor air. The aerosol particles were concentrated on quartz fibre filters with low-volume samplers equipped with size selective inlets. The filters were weighed and then extracted for cellulose analysis by an enzymatic method. The average indoor cellulose concentration was 1.01 ± 0.24 μg m?3, whereas the average outdoor cellulose concentration was 0.078 ± 0.047 μg m?3, accounting for 4.0% and 0.4%, respectively, of the PM10 mass. The corresponding average ratio between indoor and outdoor cellulose concentrations was 11.1 ± 4.9, indicating that cellulose particles were generated indoors, most likely due to the handling of cotton-made textiles as a result of routine daily activities in the bedroom. Indoor cellulose concentrations averaged 1.22 ± 0.53 μg m?3 in the aerosol coarse fraction (determined from the difference between PM10 and PM2.5 concentrations) and averaged 0.38 ± 0.13 μg m?3 in the aerosol fine fraction. The average ratio between the coarse and fine fractions of cellulose concentrations in the indoor air was 3.6 ± 2.1. This ratio is in line with the primary origin of this biopolymer. Results from this study provide the first experimental evidence in support of a significant contribution of cellulose to the mass of suspended particles in indoor air.  相似文献   

4.
This paper presents results from an in-vehicle air quality study of public transit buses in Toledo, Ohio, involving continuous monitoring, and experimental and statistical analyses to understand in-vehicle particulate matter (PM) behavior inside buses operating on B20-grade biodiesel fuel. The study also focused on evaluating the effects of vehicle’s fuel type, operating periods, operation status, passenger counts, traffic conditions, and the seasonal and meteorological variation on particulates with aerodynamic diameter less than 1 micron (PM1.0). The study found that the average PM1.0 mass concentrations in B20-grade biodiesel-fueled bus compartments were approximately 15 μg m?3, while PM2.5 and PM10 concentration averages were approximately 19 μg m?3 and 37 μg m?3, respectively. It was also observed that average hourly concentration trends of PM1.0 and PM2.5 followed a “μ-shaped” pattern during transit hours.Experimental analyses revealed that the in-vehicle PM1.0 mass concentrations were higher inside diesel-fueled buses (10.0–71.0 μg m?3 with a mean of 31.8 μg m?3) as compared to biodiesel buses (3.3–33.5 μg m?3 with a mean of 15.3 μg m?3) when the windows were kept open. Vehicle idling conditions and open door status were found to facilitate smaller particle concentrations inside the cabin, while closed door facilitated larger particle concentrations suggesting that smaller particles were originating outside the vehicle and larger particles were formed within the cabin, potentially from passenger activity. The study also found that PM1.0 mass concentrations at the back of bus compartment (5.7–39.1 μg m?3 with a mean of 28.3 μg m?3) were higher than the concentrations in the front (5.7–25.9 μg m?3 with a mean of 21.9 μg m?3), and the mass concentrations inside the bus compartment were generally 30–70% lower than the just-outside concentrations. Further, bus route, window position, and time of day were found to affect the in-vehicle PM concentrations significantly. Overall, the in-vehicle PM1.0 concentrations inside the buses operating on B20-grade biodiesel ranged from 0.7 μg m?3 to 243 μg m?3, with a median of 11.6 μg m?3.Statistical models developed to study the effects of vehicle operation and ambient conditions on in-vehicle PM concentrations suggested that while open door status was the most important influencing variable for finer particles and higher passenger activity resulted in higher coarse particles concentrations inside the vehicle compartments, ambient PM concentrations contributed to all PM fractions inside the bus irrespective of particle size.  相似文献   

5.
In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM2.5, soot, NO2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6–11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM2.5, soot and NO2 infiltrate from outdoors to indoors. The median indoor and outdoor PM2.5 levels were 8.4 μg m?3 and 9.3 μg m?3, respectively. The median indoor levels for soot and NO2 were 0.66 m?1 × 10?5 and 10.0 μg m?3, respectively. The respective outdoor levels were 0.96 m?1 × 10?5 and 12.4 μg m?3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM2.5, soot and NO2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO2 levels were strongly associated (R2 = 0.71), followed by soot (R2 = 0.50) and PM2.5 (R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM2.5 seems to infiltrate less, but indoor sources compensate.  相似文献   

6.
PM10 measurements were started in November 1992 at Melpitz site. The mean PM10 concentration in 1993 was 38 μg m?3 in the summer season (May until October) and about 44 μg m?3 in the winter season (November until April). The mean PM10 level decreased until 1999 and varies now in ranges from 20–34 μg m?3 to 17–24 μg m?3 (minimum and maximum mean values for 1999–2008) in winter and summer seasons, respectively. High volume filter samples of particles PM10, PM2.5 and PM1 were characterized for mass, water-soluble ions, organic and elemental carbon from 2004 until 2008. The percentage of PM2.5 in PM10 varies between summer (71.6%) and winter seasons (81.9%). Mean concentrations of PM10, PM2.5 and PM1 in Melpitz were 20, 15, and 13 μg m?3 in 2004, 22, 18, and 13 μg m?3 in 2005, 24, 19, and 12 μg m?3 in 2006 and 22, 17, and 12 μg m?3 in 2007, respectively. In the four winters the rural background concentration PM10 at Melpitz exceeded the daily 50 μg m?3 limit for Europe on 8, 8, 7 and 6 days, respectively.Findings for a simple two-sector-classification of the samples (May 2004 until April 2008) using 96-h backward trajectories for the identification of source regions are: Air masses were transported most of time (60%) from the western sector and secondly (17%) from the eastern sector. The lowest daily mean mass concentration PM10 were found during western inflow in summer (17 μg m?3) containing low amounts of sulphate (2.4 μg m?3), nitrate (1.7 μg m?3), ammonium (1.1 μg m?3) and TC (3.7 μg m?3). In opposite the highest mean mass concentration PM10 was found during eastern inflow in winter (35 μg m?3) with high amounts of sulphate (6.1 μg m?3), nitrate (5.4 μg m?3), ammonium (3.8 μg m?3) and TC (9.4 μg m?3). An estimation of secondary formed OC (SOA) shows 0.8–0.9 μg m?3 for air masses from West and 2.1–2.2 μg m?3 from East. The seasonal difference can be neglected.The half-hourly measurements of the particle mass concentration PM10 evaluated as mean daily courses using a TEOM® show low values (14–21 μg m?3) in summer and winter for air masses transported from West and the highest concentrations (31–38 μg m?3) in winter for air masses from East.The results demonstrate the influence of meteorological parameters on long-range transport, secondary particle mass formation and re-emission which modify mass concentration and composition of PM10, PM2.5 and PM1. Melpitz site is located in the East of Germany faraway from strong local anthropogenic emissions (rural background). Therefore, this site is suitable for investigation of the influence of long-range transport of air pollution in continental air masses from the East with source regions inside and outside of the European Union.  相似文献   

7.
Carbon monoxide (CO) and particulate matter (PM2.5) were measured in two reconstructed Danish farmhouses (17–19th century) during two weeks of summer. During the first week intensive measurements were performed while test cooking fires were burned, during the second week the houses were monitored while occupied by guest families. A masonry hearth was located in the middle of each house for open cooking fires and with heating stoves. One house had a chimney leading to the outside over the hearth; in the other, a brickwork hood led the smoke into an attic and through holes in the roof. During the first week the concentration of PM2.5 averaged daily between 138 and 1650 μg m?3 inside the hearths and 21–160 μg m?3 in adjacent living rooms. CO averaged daily between 0.21 and 1.9 ppm in living areas, and up to 12 ppm in the hearths. Highest concentrations were measured when two fires were lit at the same time, which would cause high personal exposure for someone working in the kitchens. 15 min averages of up to 25 400 μg m?3 (PM2.5) and 260 ppm CO were recorded. WHO air quality guidelines were occasionally exceeded for CO and constantly for PM2.5. However, air exchange and air distribution measurements revealed a large draw in the chimney, which ensured a fast removal of wood smoke from the hearth area. The guest families were in average exposed to no more than 0.21 ppm CO during 48 h. Based on a hypothetical time-activity pattern, however, a woman living in this type of house during the 17–19th century would be exposed to daily averages of 1.1 ppm CO and 196 μg m?3 PM2.5, which exceeds WHO guideline for PM2.5, and is comparable to what is today observed for women in rural areas of developing countries.  相似文献   

8.
In Burkina Faso where cooking with biomass is very common, little information exists regarding kitchen characteristics and their impact on air pollutant levels. The measurement of air pollutants such as respirable particulate matter (PM10), an important component of biomass smoke that has been linked to adverse health outcomes, can also pose challenges in terms of cost and the type of equipment needed. Carbon monoxide could potentially be a more economical and simpler measure of air pollution. The focus of this study was to first assess the association of kitchen characteristics with measured PM10 and CO levels and second, the relationship of PM10 with CO concentrations, across these different kitchen characteristics in households in Nouna, Burkina Faso. Twenty-four-hour concentrations of PM10 (area) were measured with portable monitors and CO (area and personal) estimated using color dosimeter tubes. Data on kitchen characteristics were collected through surveys. Most households used both wood and charcoal burned in three-stone and charcoal stoves. Mean outdoor kitchen PM10 levels were relatively high (774 μg/m3, 95 % CI 329–1,218 μg/m3), but lower than indoor concentrations (Satterthwaite t value, ?6.14; p?<?0.0001). In multivariable analyses, outdoor kitchens were negatively associated with PM10 (OR?=?0.06, 95 % CI 0.02–0.16, p value <0.0001) and CO (OR?=?0.03, 95 % CI 0.01–0.11, p value <0.0001) concentrations. Strong area PM10 and area CO correlations were found with indoor kitchens (Spearman’s r?=?0.82, p?<?0.0001), indoor stove use (Spearman’s r?=?0.82, p?<?0.0001), and the presence of a smoker in the household (Spearman’s r?=?0.83, p?<?0.0001). Weak correlations between area PM10 and personal CO levels were observed with three-stone (Spearman’s r?=?0.23, p?=?0.008) and improved stoves (Spearman’s r?=?0.34, p?=?0.003). This indicates that the extensive use of biomass fuels and multiple stove types for cooking still produce relatively high levels of exposure, even outdoors, suggesting that both fuel subsidies and stove improvement programs are likely necessary to address this problem. These findings also indicate that area CO color dosimeter tubes could be a useful measure of area PM10 concentrations when levels are influenced by strong emission sources or when used in indoors. The weaker correlation observed between area PM10 and personal CO levels suggests that area exposures are not as useful as proxies for personal exposures, which can vary widely from those recorded by stationary monitors.  相似文献   

9.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

10.
Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM10, PM2.5, CO, CO2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218~417 μg m?3 for PM10 and 201~304 μg m?3 for PM2.5), and higher concentrations of CO (10.8 ± 0.8 mg m?3) and TVOC (about 466.7 ± 337.9 μg m?3). Coal combustion also resulted in higher concentrations of particulate matters (220~250 μg m?3 for PM10 and 170~200 μg m?3 for PM2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m?3 for combustion in brick stove and 5.5 ± 0.7 mg m?3 for combustion in metal stove) and TVOC (170 mg m?3 for combustion in brick stove and 700 mg m?3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30~48%. A high fraction of SO42? (31~34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7~1.3, which was acceptable for the assessment of mass balance.  相似文献   

11.
The frequency, strength and sources of long-range transport (LRT) episodes of fine particles (PM2.5) were studied in southern Finland using air quality monitoring results, backward air mass trajectories, remote sensing of fire hot spots, transport and dispersion modelling of smoke and chemical analysis of particle samples (black carbon, monosaccharide anhydrides, oxalate, succinate, malonate, SO42?, NO3?, K+ and NH4+). At an urban background site in Helsinki, the daily WHO guideline value (24-h PM2.5 mean 25 μg m?3) was exceeded during 1–7 LRT episodes per year in 1999–2007. The 24-h mean maximum concentrations varied between 25 and 49 μg m?3 during the episodes, which was 3–6 times higher than the local mean concentration (8.7 μg m?3) in 1999–2007. The highest particle concentrations (max. 1-h mean 163 μg m?3) and the longest episodes (max. 9 days) were mainly caused by the emissions from open biomass burning, especially during springs and late-summers in 2002 and 2006. During the period 2001–2007, the satellite remote sensing of active fire hot spots and transport and dispersion modelling of smoke indicated that approximately half of the episodes were caused partly by the emissions from wildfires and/or agricultural waste burning in fields in Eastern Europe, especially in Russia, Belarus and Ukraine. Other episodes were mainly caused by the LRT of ordinary anthropogenic pollutants, e.g. from energy production, traffic, industry and wood combustion. During those ‘other episodes’, air masses also arrived from Eastern Europe, including Poland. The highest concentrations of biomass-burning tracers, such as monosaccharide anhydrides (levoglucosan + mannosan + galactosan) and K+, were observed during open biomass-burning episodes, but quite high values were also measured during some winter episodes due to wood combustion emissions. Our results indicate that open biomass burning in Eastern Europe causes high fine particle concentration peaks in large areas of Europe almost every year.  相似文献   

12.
Indoor and outdoor particulate matter (PM0.3-10) number concentrations were established in two medieval churches in Cyprus. In both churches incense was burnt occasionally during Mass. The highest indoor PM0.5-1 concentrations compared with outdoors (10.7 times higher) were observed in the church that burning of candles indoors was allowed. Peak indoor black carbon concentration was 6.8 μg m−3 in the instances that incense was burning and 13.4 μg m−3 in the instances that the candles were burning (outdoor levels ranged between 0.6 and 1.3 μg m−3). From the water soluble inorganic components determined in PM10, calcium prevailed in all samples indoors or outdoors, whilst high potassium concentration indoors were a clear marker of combustion. Indoor sources of PM were clearly identified and their emission strengths were estimated via modeling of the results. Indoor estimated PM0.3-10 mass concentrations exceeded air quality standards for human health protection and for the preservation of works of art.  相似文献   

13.
This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.  相似文献   

14.
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States–Mexico border. During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14–30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 μg m?3 and biomass stoves 163 to 504 μg m?3. Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 μg m?3). The former is evident in the median and range of daytime PM values (median PM3: 250 μg m?3, maximum: 9411 μg m?3), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 μg m?3, maximum: 10,846 μg m?3). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 μg m?3).
Implications:Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States–Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.  相似文献   

15.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

16.
Thoracic (PM10), fine thoracic (PM2.5) and sub-micrometer (PM1) airborne particulate matter was sampled during day and night. In total, about 100 indoor and outdoor samples were collected for each fraction at ten different office environments. Energy-dispersive X-ray fluorescence spectrometry and ion chromatography were applied for the quantification of some major and minor elements and ions in the collected aerosols. During daytime, mass concentrations were in the ranges: 11–29, 8.1–24, and 6.6–18 μg m?3, with averages of 20 ± 1, 15.0 ± 0.9, and 11.0 ± 0.8 μg m?3, respectively. At night, mass concentrations were found to be significantly lower for all fractions. Indoor PM1 concentrations exceeded the corresponding outdoor levels during office hours and were thought to be elevated by office printers. Particles with diameters between 1 and 2.5 μm and 2.5 and 10 μm were mainly associated with soil dust elements and were clearly subjected to distinct periods of settling/resuspension. Indoor NO3? levels were found to follow specific microclimatic conditions at the office environments, while daytime levels of sub-micrometer Cl? were possibly elevated by the use of Cl-containing cleaning products. Indoor carbon black concentrations were sometimes as high as 22 μg m?3 and were strongly correlated with outdoor traffic conditions.  相似文献   

17.
Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 μm (PM2.5) concentration in moving cars with different window opening conditions. The PM2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM2.5 concentrations were 16–17 μg m?3. Regardless of different window opening conditions, the PM2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM2.5 levels were 506–1307 μg m?3 with different window opening conditions. When smoking was ceased, the average PM2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 μg m?3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy.  相似文献   

18.
The extent of the exceedance of the EU limit values for nitrogen dioxide (NO2) and particulate matter (PM10) concentrations within the Netherlands is expected to decrease significantly, in the coming years. Whether limit values will actually be exceeded, in the next decade, depends not only on European, national and local policies, but also on the effects of inevitable interannual meteorological fluctuations. An analysis of model calculations and measurements yields variations (1 sigma) in the annual average concentration of about 5% for NO2 and 9% for PM10, due to meteorological fluctuations. These deviations from long-term average concentrations affect assessments of future levels, set against limit values. For instance, an NO2 concentration of 39 μg m?3, estimated for a given year with long-term average meteorology, indicates that it is likely (chance >66%) that the limit value of 40 μg m?3 will not be exceeded in that particular year. At the same time, the estimation also indicates, for example, that this situation is unlikely (change <33%) to continue for three years in a row. However, with an estimated concentration of 38 μg m?3, it is likely that the limit value will not be exceeded for three years in a row. The limit value for the daily average PM10 concentration is equivalent to an annual average of about 32 μg m?3. This threshold is unlikely to be exceeded for three years in a row, when an annual average concentration of 29 μg m?3 is estimated. Interannual variations in concentrations of NO2 and PM10 are linked to large-scale meteorological fluctuations. Therefore, similar results can be expected for other European countries.  相似文献   

19.
Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available.In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM10 and PM2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650–1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called “pulling equations”.ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m?3 (17%) in PM10, 2.2 μg m?3 (8%) of PM2.5 and 0.3 μg m?3 (2%) of PM1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total traffic emissions respectively in PM10, PM2.5 and PM1. Therefore the overall traffic contribution resulted in 18 μg m?3 (46%) in PM10, 14 μg m?3 (51%) in PM2.5 and 8 μg m?3 (48%) in PM1. In PMF2 this mass explained by road dust resuspension was redistributed among the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea salt contributions.  相似文献   

20.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号