首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A nationwide investigation into polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in market seafood was conducted for the first time in this study. Total PCDD/F concentrations in fatty fish ranged from 0.13 to 8.64 pg g−1 wet weight (mean 2.05 pg g−1 wet weight), total PCB concentrations ranged from 38.9 to 3514 pg g−1 wet weight (mean 1133 pg g−1 wet weight), and total PBDE concentrations ranged from 42.8 to 913 pg g−1 wet weight (mean 322 pg g−1 wet weight). Corresponding mean toxicity equivalent (TEQ) values for total PCDD/F and dioxin-like PCB were 0.25 pg g−1 wet weight (WHO 98-TEQ) and 0.32 pg g−1 wet weight (WHO 98-TEQ), respectively. OCDD, PCB-138 and PBDE-47 were the dominant compounds according to their respective congeners. WHO 98-TEQ PCDD/PCDF/PCB for fatty fish and shell fish were 0.60 and 0.070 pg g−1 wet weight, respectively, lower than the standard set by the European Commission. The contamination levels and profiles were compared with those documented in previous publications.  相似文献   

2.
Human breast milk offers the optimal nutrition for all infants and have been widely used in biomonitoring programs to assess human exposure to lipophylic environmental contaminants such as polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and polychlorinated biphenyls (PCB). There are no previous reports from Turkey on chemically determined levels of PCDDs, PCDFs, and PCBs in human breast milk expressed as World Health Organization (WHO) toxic equivalents (TEQ). To get an overview of the levels of these contaminants in Turkish human milk, samples from 51 Turkish women living in the Ankara, İstanbul, Antalya, Kahramanmaraş, and Afyon provinces were analyzed by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) throughout 2007. The mean concentrations of WHOPCDD/F-TEQ and WHOPCB-TEQ of all samples from the five regions were 7.5 and 3.1 pg g−1 on a lipid basis, respectively. PCDD/F concentrations ranged between 0.78 and 29.3 pg WHO-TEQ g−1 fat (1.7 and 36.2 pg WHO-TEQ g−1 fat, respectively, including PCB). Of the five studied locations, the lowest levels of ∑TEQs (PCDD/F + PCB) were found in the Afyon (6.8 pg WHO-TEQ g−1 fat) and the highest in the Antalya (15.6 pg WHO-TEQ g−1 fat) province. The results have been discussed in terms of regions and PCDD/F and PCBs for which analyses had been made. The mean levels of PCDD/Fs and PCBs in Turkish human milk are comparable to that found in other countries.  相似文献   

3.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

4.
This study measured particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in two workplace atmospheres of the sintering grate and rough roll shredder in a sintering plant, and to assess their workers’ health-related exposures. We found that the PCDD/F concentration of the sintering grate (site A = 14.47 pg m−3) was lower than that of the rough roll shredder (site B = 17.20 pg m−3). Particle size distributions of PCDD/Fs were in the form of the unimodal with the mass median aerodynamic diameter (MMAD) of 4.74 μm and 5.23 μm, and geometric standard deviation (σg) of 3.15 and 2.15 for the site A and B, respectively. The above results suggest that the workplace of the site A had a less fraction of coarse particles than that of the site B. The estimated PCDD/F concentrations of the inhalable fraction (11.0 pg m−3) and thoracic fraction (8.89 pg m−3) of the site A were lower than those of the site B (12.4 and 9.39 pg m−3, respectively). But to the contrary the estimated respirable fraction of the site A (5.05 pg m−3) was slightly higher than that of the site B (4.93 pg m−3). Our results clearly indicate the importance to conduct particle size segregating samplings for assessing human PCDD/F exposures.  相似文献   

5.

From simultaneous air and water polychlorinated biphenyl (PCB) measurements collected in September 2010, we re-evaluated the direction and magnitude of net air-water exchange of PCBs in southwest Lake Michigan and compared them with estimations made using similar approaches 15 years prior. Air and water samples were collected during a research expedition on Lake Michigan at 5 km off the coast of Chicago, with prevailing winds from the southwest of our location. Gas-phase ΣPCB concentrations ranged from 190 to 1100 pg m?3 with a median of 770 pg m?3, which is similar to the concentrations measured in the City of Chicago at the same time and similar to concentrations measured in this part of the lake over the last 20 years. Water dissolved-phase ΣPCB concentrations ranged from 150 to 170 pg L?1 with a median of 160 pg L?1, which is one-tenth of that measured in the 1990s. ?PCB net fluxes showed a slightly absorptive behavior, with a median of (?) 21 ng m?2 day?1 and an interquartile range of (?) 47 to (+) 5 ng m?2 day?1, where (?) and (+) fluxes indicate absorption and volatilization, respectively. Airborne PCB concentrations were higher when the winds were coming from Chicago and drive the deposition. Our fluxes are not significantly different from estimations from 1994 and 1995 and suggest that absorption of PCBs into the waters is slightly more prevalent than 15 years ago. It was confirmed that Chicago remains an important atmospheric source of PCBs to Lake Michigan.

  相似文献   

6.
The main objective of this work was to assess the atmospheric concentrations and seasonal variations of selected POPs in a sub-alpine location where few data are available. A monitoring and research station was set up at the JRC Ispra EMEP site (Italy). We present and discuss a one-year data set (2005-2006) on PCB air concentrations. ∑7PCBs monthly averaged concentration varied from 31 to 76 pg m−3. Concentrations in the gas phase (21-72 pg m−3) were higher than those in the particulate phase (3-10 pg m−3). Advection of air masses and re-volatilization from local sources seem to play a dominant role as drivers of PCB atmospheric concentrations in the area. Indications of seasonal variation affecting PCB congener patterns and the gas/particulate partitioning were found. Modeling calculations suggest a predominant importance of the wet deposition in this region (1 μg m−2 yr−1 ∑7PCBs yearly total wet deposition flux; 650-2400 pg L−1 rainwater concentrations).  相似文献   

7.
Jiang Y  Wang X  Zhu K  Wu M  Sheng G  Fu J 《Chemosphere》2011,83(6):767-773
Surface soil samples taken from 55 sampling sites at the urban areas of Shanghai were collected and analyzed for the occurrence of 144 polychlorinated biphenyls (PCBs) by GC-μECD. The results showed that totally 74 PCB congeners were identified and the mean concentration of total PCBs was 3057 ng kg−1 with a range of 232 to 11325 ng kg−1. Compared with the related reports, the level of PCBs contamination in this study was approximately equal to the global background value in soils, but higher than Chinese background for rural and urban soils. According to the compositional profiles of PCBs homologues, a higher proportion of low chlorinated (from tri-CBs to hexa-CBs) was observed. The results indicated that PCB15 + 13, PCB18, PCB28, PCB104 + 47 and PCB153 were the most dominant congeners among the identified PCBs. Through homologues analysis, cluster analysis and principal component analysis (PCA), it was found that PCBs were stretched from mixed local sources, and appeared to be mostly originated by Aroclor 1260- and 1254-like mixtures as well as some samples influenced by Aroclor 1232 and 1242. The correlation analysis showed the relatively good correlation among the PCB homologues and soil total organic carbon (TOC), suggesting important influence of soil TOC on PCBs contamination in soil matrix in Shanghai region. The toxic equivalency (TEQ) concentrations of these six dioxin-like PCBs detected in urban soil samples range from 2.71 to 24.9 pg kg−1-PCDDeq with a mean 8.18 pg kg−1-PCDDeq.  相似文献   

8.
Desorption of PCBs from sediment can significantly affect the ultimate fate and effects of PCBs in aquatic systems. Using a gas purging technique to strip soluble and sorbed polychlorinated biphenyls (PCBs) from solutions and sediment suspensions, Henry's law constants, approach to equilibrium, and desorption rate constants for four PCB congeners were measured. Henry's law constants were on the order of 10−4 m3 atm mole−1. Desorption rate constants measured for a predominantly kaolinitic, low-organic carbon sediment were on the order of 0.03–0.1 days−1. In contrast, desorption rate constants measured for a sediment composed of montmorillonite with a 3% organic carbon content were on the order of 0.009–0.04 days−1. Desorption data suggest that equilibration times for PCBs with low chlorine content are on the order of six weeks, and months to years for PCBs with a significantly higher chlorine content.  相似文献   

9.
PM2.5 and PM10 were collected during 24-h sampling intervals from March 1st to 31st, 2006 during the MILAGRO campaign carried out in Mexico City's northern region, in order to determine their chemical composition, oxidative activity and the estimation of the source contributions during the sampling period by means of the chemical mass balance (CMB) receptor model. PM2.5 concentrations ranged from 32 to 70 μg m−3 while that of PM10 did so from 51 to 132 μg m−3. The most abundant chemical species for both PM fractions were: OC, EC, SO42−, NO3, NH4+, Si, Fe and Ca. The majority of the PM mass was comprised of carbon, up to about 52% and 30% of the PM2.5 and PM10, respectively. PM2.5 constituted more than 50% of PM10. The redox activity, assessed by the dithiothreitol (DTT) assay, was greater for PM2.5 than for PM10, and did not display significant differences during the sampling period. The PM2.5 source reconciliation showed that in average, vehicle exhaust emissions were its most important source in an urban site with a 42% contribution, followed by re-suspended dust with 26%, secondary inorganic aerosols with 11%, and industrial emissions and food cooking with 10% each. These results had a good agreement with the Emission Inventory. In average, the greater mass concentration occurred during O3S that corresponds to a wind shift initially with transport to the South but moving back to the North. Taken together these results show that PM chemical composition, oxidative potential, and source contribution is influenced by the meteorological conditions.  相似文献   

10.
 This study is aimed to characterize the major chemical compositions of PM2.5 from incense burning in a large environmental chamber. Chemical analyses, including X-ray fluorescence for elemental species, ion chromatography for water soluble inorganic species (chloride, nitrate, sulfate, sodium, potassium, ammonium) and thermal/optical reflectance analysis for carbon species were carried out for combustion of three incense categories (traditional, aromatic and church incense). The average concentrations from incense burning ranged from 139.8 to 4414.7 μg m−3 for organic carbon (OC), and from 22.8 to 74.0 μg m−3 for elemental carbon (EC), respectively. The average OC and EC concentrations in PM2.5 of three incense categories were in the order of church incense>traditional incense>aromatic incense. OC/EC ratios ranged from 7.0 to 39.1 for the traditional incense, with an average of 21.7; from 3.2 to 11.9 for the aromatic incense, with an average of 7.7. The concentrations of Cl, SO42−, Na+ and K+ were highly variable. On average, the inorganic ion concentration sequence was traditional incense>church incense>aromatic incense. The profiles for elements were dominated by Na, Cl and K. In general, the major components in PM2.5 fraction from incense burning are OC (especially OC2, OC3 and OC4), EC and K.  相似文献   

11.
There is a lack of information regarding persistent organic pollutants (POPs) in soil from Slovakia. This paper reports the concentrations of 17 polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), 12 dioxin-like polychlorinated biphenyls (dl-PCBs) and 6 indicator PCBs associated with 32 soil samples collected in 2007 from areas in the vicinity up to several kilometres from four selected industrial PCDD/F sources in Slovakia and one background area.The results show that the total WHO1998-PCDD/F/dl-PCB-TEQ concentrations varied from 0.34 to 18.05 pg g−1 dry weight (dw) and the average total TEQ concentrations in samples collected at the Šala, Košice, Krompachy and Dubová areas were 3.18, 2.64, 7.80, and 3.19 pg g−1 dw respectively. The average of the total WHO1998-TEQ values in three soil samples representing the background Starina area was 0.66 pg g−1 dw. The predominant contaminants among 2,3,7,8-substituted PCDD/Fs, dl-PCB, and indicator PCBs was OCDD, PCB 118, and PCB 153 respectively. The major contributors to the TEQ were 2,3,4,7,8-PeCDF, PCB 126, 1,2,3,7,8-PeCDD, PCB 156 and 1,2,3,4,7,8-HxCDF + 1,2,3,4,7,9-HxCDF in descending order.  相似文献   

12.
Conservative models were used to estimate the airborne concentrations of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) vapor and particulates originating from soil containing 100 ppb TCDD. The upper-bound estimates were 3.25 pg/m3 of airborne TCDD vapor on-site and 0.51 pg/m3 for TCDD vapor 100 meters downwind. The TCDD air concentration on-site due to suspended particulate is estimated to be 1.4 pg/m3, based on a TSP level of 0.07 mg/m3. Assuming 70 years of continuous exposure to these concentrations, the upper-bound cancer risks determined from the Jury model were estimated to be 9.4 × 10−6 to 1.1 × 10−4 and 1.5 × 10−6 to 1.7 × 10−5 for inhalation of on- and off-site vapor, respectively, and 4.1 × 10−6 to 4.6 × 10−5 for dust inhalation. Since few sites have average soil concentrations as high as 100 ppb TCDD, this worst-case analysis indicates that inhalation will rarely, if ever, be a significant route of exposure to TCDD-contaminated soil. Experimental results support this claim and point to much lower risk estimates (8.4 × 10−9 to 9.9 × 10−8), suggesting that the parameters used in the Jury model are likely to overestimate the actual airborne levels of TCDD at contaminated sites.  相似文献   

13.
PAHs and PCBs were collected simultaneously indoors and outdoors at eight non-smoking homes located in four buildings in high-traffic areas of Rome. The purpose was to evaluate the relevance of indoor air in contributing to the overall exposure of the urban population. The vertical distribution was also investigated by collecting outdoor samples at both road and roof level, and indoor samples in both a high and a low floor flat of each building. At one coal-heated building, samples were collected during both the heating and the non-heating season. No evident PAH source was present indoors. Indoor and outdoor daily concentrations of benzo[a]pyrene (BaP) ranged, respectively, 0.1–4.6 ng m−3 and 0.7–2.3 ng m−3. With the heating on, indoor PAH concentrations equalled or exceeded those outdoors, with BaP indoor/outdoor ratios up to 4; during the warm season, ratios decreased to 0.2–0.6. Indoor PAHs at the low floors exceeded the high-floor ones when the heating was off (vehicle exhausts being the dominant source), while being equal or lower with the heating on; the vertical gradient of indoor PAHs between different floors was within a factor of 2. Outdoor PAHs at roof level were 20–70% of those at road level, which in turn exceeded those at the medium-traffic station up to a factor of 4. The outdoor concentrations of Σ6 indicator PCBs ranged 0.1–1.6 ng m−3. Indoor PCB concentrations exceeded those outdoors by an approximate factor of 2–50. No vertical gradient was observed. The results indicated that indoor air may contribute to the overall exposure to PAHs and PCBs more than the urban air. They were also consistent with recent findings suggesting that indoor air can be a relevant source of PCBs for outdoor air.  相似文献   

14.
Smog chamber/FTIR techniques were used to study the relative reactivity of OH radicals with methanol, ethanol, phenol, C2H4, C2H2, and p-xylene in 750 Torr of air diluent at 296±2 K. Experiments were performed with, and without, 500–8000 μg m−3 (4000–50 000 μm2 cm−3 surface area per volume) of NaCl, (NH4)2SO4 or NH4NO3 aerosol. In contrast to the recent findings of Oh and Andino (Atmospheric Environment 34 (2000) 2901, 36 (2002) 149; International Journal of Chemical Kinetics 33 (2001) 422) there was no discernable effect of aerosol on the rate of loss of the organic compounds via reaction with OH radicals. Gas kinetic theory arguments cast doubt upon the findings of Oh and Andino. The available data suggest that the answer to the title question is “No”. As part of this work the rate constants for reactions of OH radicals with methanol, ethanol, and phenol in 750 Torr of air at 296 K were determined to be: kOH+CH3OH=(8.12±0.54)×10−13, kOH+C2H5OH=(3.47±0.32)×10−12 and kOH+phenol=(3.27±0.31)×10−11 cm3 molecule−1 s−1.  相似文献   

15.
This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM10 and PM2.5 increased with increasing load. The LPNE was 3.5 mg tire−1 km−1 for a two wheeler and 6.4 mg tire−1 km−1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM10 and PM2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM10 was present below 1 μm. The number as well as mass size distribution for PM10 was observed to be bi-modal with peaks at 0.3 μm and 4–5 μm. The NE emissions did not show any significant trend with change in tire pressure.  相似文献   

16.
In order to carry out efficient traffic and air quality management, validated models and PM emission estimates are needed. This paper compares current available emission factor estimates for PM10 and PM2.5 from emission databases and different emission models, and validates these against eight high quality street pollution measurements in Denmark, Sweden, Germany, Finland and Austria.The data sets show large variation of the PM concentration and emission factors with season and with location. Consistently at all roads the PM10 and PM2.5 emission factors are lower in the summer month than the rest of the year. For example, PM10 emission factors are in average 5–45% lower during the month 6–10 compared to the annual average.The range of observed total emission factors (including non-exhaust emissions) for the different sites during summer conditions are 80–130 mg km−1 for PM10, 30–60 mg km−1 for PM2.5 and 20–50 mg km−1 for the exhaust emissions.We present two different strategies regarding modelling of PM emissions: (1) For Nordic conditions with strong seasonal variations due to studded tyres and the use of sand/salt as anti-skid treatment a time varying emission model is needed. An empirical model accounting for these Nordic conditions was previously developed in Sweden. (2) For other roads with a less pronounced seasonal variation (e.g. in Denmark, Germany, Austria) methods using a constant emission factor maybe appropriate. Two models are presented here.Further, we apply the different emission models to data sets outside the original countries. For example, we apply the “Swedish” model for two streets without studded tyre usage and the “German” model for Nordic data sets. The “Swedish” empirical model performs best for streets with studded tyre use, but was not able to improve the correlation versus measurements in comparison to using constant emission factors for the Danish side. The “German” method performed well for the streets without clear seasonal variation and reproduces the summer conditions for streets with pronounced seasonal variation. However, the seasonal variation of PM emission factors can be important even for countries not using studded tyres, e.g. in areas with cold weather and snow events using sand and de-icing materials. Here a constant emission factor probably will under-estimate the 90-percentiles and therefore a time varying emission model need to be used or developed for such areas.All emission factor models consistently indicate that a large part (about 50–85% depending on the location) of the total PM10 emissions originates from non-exhaust emissions. This implies that reduction measures for the exhaust part of the vehicle emissions will only have a limited effect on ambient PM10 levels.  相似文献   

17.
Diffusion coefficients (T=23±2 °C) and accessible porosities for HTO, 36Cl and 125I were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na+ and Cl as the main components (I=0.42 M).The measured values of the effective diffusion coefficients (De) and rock capacity factors (α) are: De=1.2–1.5×10−11 m2 s−1 and α=0.09–0.11 for HTO, De=4.0–5.5×10−12 m2 s−1 and α=0.05 for 36Cl and De=3.2–4.6×10−12 m2 s−1 and α=0.07–0.10 for 125I. For non-sorbing tracers (HTO, 36Cl) the rock capacity factor α is equal to the diffusion-accessible porosity . The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of 17% for HTO, 28% for 36Cl and 30% for 125I. Moreover, the diffusion coefficients for 36Cl and 125I are smaller than for HTO, which is consistent with an effect arising from anion exclusion.The diffusion coefficients of HTO and 125I measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

18.
Twenty-one samples were collected during the dry season (26 January–28 February 2004) at 12 sites in and around Addis Ababa, Ethiopia and analyzed for particulate matter with aerodynamic diameter <10 μm (PM10) mass and composition. Teflon-membrane filters were analyzed for PM10 mass and concentrations of 40 elements. Quartz-fiber filters were analyzed for chloride, sulfate, nitrate, and ammonium ions as well as elemental carbon (EC) and organic carbon (OC) content. Measured 24-h PM10 mass concentrations were <100 and 40 μg m−3 at urban and suburban sites, respectively. PM10 lead concentrations were <0.1 μg m−3 for all samples collected, an important finding because the government of Ethiopia had stopped the distribution of leaded gasoline a few months prior to this study. Mass concentrations reconstructed from chemical composition indicated that 34–66% of the PM10 mass was due to geologically derived material, probably owing to the widespread presence of unpaved roads and road shoulders. At urban sites, EC and OC compounds contributed between 31% and 60% of the measured PM10 while at suburban sites carbon compounds contributed between 24% and 26%. Secondary sulfate aerosols were responsible for <10% of the reconstructed mass in urban areas but as much as 15% in suburban sites, where PM10 mass concentrations were lower. Non-volatile particulate nitrate, a lower limit for atmospheric nitrate, constituted <5% and 7% of PM10 at the urban and suburban sites, respectively. At seven of the 12 sites, real-time PM10 mass, real-time carbon monoxide (CO), and instantaneous ozone (O3) concentrations were measured with portable nephelometers, electrochemical analyzers, and indicator test sticks, respectively. Both PM10 and CO concentrations exhibited daily maxima around 7:00 and secondary peaks in the late afternoon and evening, suggesting that those pollutants were emitted during periods associated with motor-vehicle traffic, food preparation, and heating of homes. The morning concentration maxima were likely accentuated by stable atmospheric conditions associated with overnight surface temperature inversions. Ozone concentrations were measured near mid-day on filter sample collection days and were in all cases <45 parts per billion.  相似文献   

19.
PM10 measurements were started in November 1992 at Melpitz site. The mean PM10 concentration in 1993 was 38 μg m?3 in the summer season (May until October) and about 44 μg m?3 in the winter season (November until April). The mean PM10 level decreased until 1999 and varies now in ranges from 20–34 μg m?3 to 17–24 μg m?3 (minimum and maximum mean values for 1999–2008) in winter and summer seasons, respectively. High volume filter samples of particles PM10, PM2.5 and PM1 were characterized for mass, water-soluble ions, organic and elemental carbon from 2004 until 2008. The percentage of PM2.5 in PM10 varies between summer (71.6%) and winter seasons (81.9%). Mean concentrations of PM10, PM2.5 and PM1 in Melpitz were 20, 15, and 13 μg m?3 in 2004, 22, 18, and 13 μg m?3 in 2005, 24, 19, and 12 μg m?3 in 2006 and 22, 17, and 12 μg m?3 in 2007, respectively. In the four winters the rural background concentration PM10 at Melpitz exceeded the daily 50 μg m?3 limit for Europe on 8, 8, 7 and 6 days, respectively.Findings for a simple two-sector-classification of the samples (May 2004 until April 2008) using 96-h backward trajectories for the identification of source regions are: Air masses were transported most of time (60%) from the western sector and secondly (17%) from the eastern sector. The lowest daily mean mass concentration PM10 were found during western inflow in summer (17 μg m?3) containing low amounts of sulphate (2.4 μg m?3), nitrate (1.7 μg m?3), ammonium (1.1 μg m?3) and TC (3.7 μg m?3). In opposite the highest mean mass concentration PM10 was found during eastern inflow in winter (35 μg m?3) with high amounts of sulphate (6.1 μg m?3), nitrate (5.4 μg m?3), ammonium (3.8 μg m?3) and TC (9.4 μg m?3). An estimation of secondary formed OC (SOA) shows 0.8–0.9 μg m?3 for air masses from West and 2.1–2.2 μg m?3 from East. The seasonal difference can be neglected.The half-hourly measurements of the particle mass concentration PM10 evaluated as mean daily courses using a TEOM® show low values (14–21 μg m?3) in summer and winter for air masses transported from West and the highest concentrations (31–38 μg m?3) in winter for air masses from East.The results demonstrate the influence of meteorological parameters on long-range transport, secondary particle mass formation and re-emission which modify mass concentration and composition of PM10, PM2.5 and PM1. Melpitz site is located in the East of Germany faraway from strong local anthropogenic emissions (rural background). Therefore, this site is suitable for investigation of the influence of long-range transport of air pollution in continental air masses from the East with source regions inside and outside of the European Union.  相似文献   

20.
In this study the frequencies of PM10 (as key urban pollutant) in 14 key environmental protection cities in northern China were analyzed. It follows that the PM10 concentration in the high-frequency period is higher with an extent 0.009–0.066 mg m−3 than in the low-frequency period of 2001–2002. Further the impacts of three kinds of dust events on the PM10 concentration in four cities (Beijing, Hohhot, Xi’an and Lanzhou) were explored. The results showed that different kinds of dust events have different influences on variation of PM10 concentration in these four cities. In Lanzhou and Hohhot, which are near the source areas of dust events, the contribution degree of these three dust events to the PM10 is: floating dust>dust storm>blowing dust. Whereas, in Beijing and Xi’an situated in dust event passing areas, the mean value of PM10 concentration is higher in blowing dust than in floating dust (no dust storm). In addition, the influences of dust events on PM10 concentration are different in the cities on different dust event paths. In Beijing and Hohhot (on the northern path), the high PM10 concentration is usually caused by blowing dust. But in both Lanzhou and Xi’an (on the western/northwestern path) the high PM10 pollution concentration is usually caused by floating dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号