首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

2.
In this work, stationary and mobile point source tracer release techniques have been used to determine PM10 emission rates from four-lane commercial/residential paved roads under sanded and unsanded conditions, and from unpaved roads relative to site-specific vehicular and ambient parameters. Measured street (4 + lanes; ? 10,000 vehicles per day) emission factors for unsanded and sanded roads were 40 and 20% lower, respectively, than the EPA approved reference value. The sanded road emission factor was approximately 40% higher than that for the unsanded road. These results indicate a consistent relationship between PM10 and relative humidity under unsanded conditions. There is some evidence to suggest that street sweeping has a measurable effect on PM,, emission reduction during periods of low relative humidity (i.e. ? 30%). Within the constraints imposed by the variable experimental conditions, the emission factors determined for unpaved roads agreed reasonably well with the unpaved road empirical formula. Limited correlations were observed with ambient meteorological parameters. The capability of the “upwind-dowiawind” concentration modeling method to predict accurate emission was tested using a Gaussian dispersion model (SIMFLUX). Predictions agreed well with the experimentally determined emission factors.  相似文献   

3.
Emission factors for particulate matter (PM) are generally reported as mass emission factors (PM mass emitted per time or activity) as appropriate for air quality standards based on mass concentration. However, for visibility and radiative transfer applications, scattering, absorption, and extinction coefficients are the parameters of interest, with visibility standards based on extinction coefficients. These coefficients (dimension of inverse distance) equal cross-section concentrations, and, therefore, cross-section emission factors are appropriate. Scattering cross-section emission factors were determined for dust entrainment by nine vehicles, ranging from light passenger vehicles to heavy military vehicles, traveling on an unpaved road. Each vehicle made multiple passes at multiple speeds while scattering and absorption coefficients, wind velocity and dust plume profiles, and additional parameters were measured downwind of the road. Light absorption of the entrained PM was negligible, and the light extinction was primarily caused by scattering. The resulting scattering cross-section emission factors per vehicle kilometer traveled (vkt) range from 12.5 m2/vkt for a slow (16 km/ hr), light (1176 kg) vehicle to 3724 m2/vkt for a fast (64 km/hr), heavy (17,727 kg) vehicle and generally increase with vehicle speed and mass. The increase is approximately linear with speed, yielding emission factors per vkt and speed ranging from 4.2 m2/(vkt km/hr) to 53 m2/(vkt km/hr). These emission factors depend approximately linearly on vehicle mass within the groups of light (vehicle mass < or =3100 kg) and heavy (vehicle mass >8000 kg) vehicles yielding emission factors per vkt, speed, and mass of 0.0056 m2/(vkt km/hr kg) and 0.0024 m2/(vkt km/hr kg), respectively. Comparison of the scattering cross-section and PM mass emission factors yields average mass scattering efficiencies of 1.5 m2/g for the light vehicles and of 0.8 m2/g for the heavy vehicles indicating that the heavy vehicles entrain larger particles than the light vehicles.  相似文献   

4.
The testing re-entrained aerosol kinetic emissions from roads technique is compared with distance-based emission factors (EFs; g/VKT) measured downwind of a dirt road by using towers instrumented with real-time meteorological and particle sensors at multiple heights. The emission potential (EP), defined as the EF divided by the vehicle speed (m/sec), and weight index permits the intercomparison of emissions from multiple roadways surveyed by the TRAKER vehicle. A survey of 72 km of unpaved roads on the Ft. Bliss Military Base near El Paso, Texas, indicated that 60% of all measured EPs fell between 6.7 (g/VKT)/(m/sec) and 9.6 (g/VKT)/(m/sec). The EP measured across the base was approximately 50% lower than those collected in the vicinity of the instrumented towers. This implies that EFs measured for other vehicles on the same test section should be reduced by 50% to more accurately represent EFs for the entire military base. Using geographic information system-based soil maps, the inferred EFs are related to differences in soil types over the survey area. Variations among five different soil types accounted for <10% of variation in EP. Individual measurements using the testing re-entrained aerosol kinetic emissions from roads technique did show larger spatial variations in EP; however, these were not effectively captured by the soil classifications, partly because of the comparatively coarse spatial classification used in the soil survey data.  相似文献   

5.
Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).  相似文献   

6.
ABSTRACT

Motor vehicle contributions to primary particulate matter (PM) emissions include exhaust, tire wear, brake and clutch wear, and resuspended road dust. Relatively few field studies have been conducted to quantify fleetaverage exhaust emissions for actual on-road conditions. Therefore, direct measurements of motor vehicle-related PM emissions are warranted. In this study, PM10 and PM2.5 mass concentrations were measured near two major highways in the St. Louis area over the period from February–April 1997. Samplers were deployed both upwind and downwind of the roadways to capture the transport and dispersion of PM with distance from the roadway. The observed microscale concentration fields were compared to estimates using the PART5 emission factor model together with the CALINE4 highway dispersion model. Traffic- induced PM mass concentrations observed downwind of the roadway were always less than PART5/CALINE4 predictions; average percent differences for observed traffic-induced mass concentrations compared to predicted values were ?34% for PM2.5 and -70% for PM10. In most cases, the observed PM concentration decay with increasing distance from the roadway was steeper than predicted by dispersion modeling. Motor vehicle-induced emission factors were reconstructed by fitting CALINE4 to the observed concentration data with the emission factor as the sole adjustable parameter. Reconstructed fleet-average motor vehicle emission factors for the urban interstate highway were 0.03–0.04 g/VMT for both PM2.5 and PM10, while the fleet-average emission factors for the rural interstate highway were 0.2 and 0.3 g/VMT for PM2.5 and PM10, respectively.  相似文献   

7.
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM2.5 and PM10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM2.5 and PM10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM2.5 and PM10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions.

Implications: This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.  相似文献   


8.
Many areas in Jordan suffer from elevated levels of coarse particulate matter (PM10). One potentially significant source of the observed PM is the resuspension of road dust in the vicinity of limestone quarries. To obtain data to assess the impact from this source, PM10 road dust resuspension factors near Abusiiah, a town to the north east of Amman surrounded by many quarries and brick factories, were measured. Measurements included PM10 mass, particle size distributions, wind speed, and wind direction. The results showed that PM10 concentrations could be as high as 600 microg/m3, and most of the airborne PM is in the coarse fraction. Loading trucks play a major role in resuspending road dust, with an observed PM10 emission rate of >6000 mg/km.  相似文献   

9.
The paving of gravel roads with an average daily traffic (ADT) over 15 is a least cost method for reducing suspended particulate In the air in Seattle. It is also a good business investment when the ADT exceeds 100. Clean roads, gutters, and parking lots may reduce or eliminate Seattle’s most serious environmental constraint on economic development. In a study done in Seattle’s Duwamish Valley the impact of road dust on air quality was measured by obtaining dust emission factors for vehicles traveling at 10, 20, and 30 mph on gravel as well as dusty paved roads. A University of Washington Mark II Cascade Impactor was mounted on a trailer and towed behind a car to determine the concentration and size distribution of this dust. It was found that each vehicle mile at 20 mph on unpaved roads contributed 7.0 Ib of dust to the air, 1.9 Ib consisting of particles smaller than 10 microns in diameter and 0.24 Ib below 2 microns. Three to eight percent by weight of this respirable dust was free silica, which is potentially toxic. The quantity of dust generated varies as an exponent of the speed. The concentrations of dust found in the air near a dry gravel road with an ADT of 250 reached 584 μg/m3 for an 8 hr work day. A 24 hr suspended particulate reading of 463 μg/m3 total and 3.83 μg/m3 free silica was found beside a dusty paved road with an ADT of 18,000. Nineteen miles of gravel roads and 110 miles of dusty paved roads contributed 2700 tons/year of particulate, of which 700 tons were below 10 microns. Paving or oiling such roads will produce benefits of $3,881,000 yearly in household cleaning, health care, sewer, vehicle operation, and road maintenance costs as well as an increase in property values. Clean roads can lower the cost of clean air in Seattle.  相似文献   

10.
Windblown dust is known to impede visibility, deteriorate air quality and modify the radiation budget. Arid and semiarid areas with unpaved and unvegetated land cover are particularly prone to windblown dust, which is often attributed to high particulate matter (PM) pollution in such areas. Yet, windblown dust is poorly represented in existing regulatory air quality models. In a study by the authors on modeling episodic high PM events along the US/Mexico border using the state-of-the-art CMAQ/MM5/SMOKE air quality modeling system [Choi, Y.-J., Hyde, P., Fernando, H.J.S., 2006. Modeling of episodic particulate matter events using a 3D air quality model with fine grid: applications to a pair of cities in the US/Mexico border. Atmospheric Environment 40, 5181–5201], some of the observed PM10 NAAQS exceedances were inferred as due to windblown dust, but the modeling system was incapable of dealing with time-dependent episodic dust entrainment during high wind periods. In this paper, a time-dependent entrainment parameterization for windblown dust is implemented in the CMAQ/MM5/SMOKE modeling system with the hope of improving PM predictions. An approach for realizing windblown dust emission flux for each grid cell over the study domain on an hourly basis, which accounts for the influence of factors such as soil moisture content, atmospheric stability and wind speed, is presented in detail. Comparison of model predictions with observational data taken at a pair of US/Mexico border towns shows a clear improvement of model performance upon implementation of the dust emission flux parameterization.  相似文献   

11.
On November 18, 1997, above-road particulate matter (PM) lidar (light detection and ranging) signals and heavy-duty (HD) and light-duty (LD) vehicle counts were simultaneously collected for 894 10-sec sampling periods at the Caldecott Tunnel in Orinda, CA, for the purpose of measuring the relative contributions of LD and HD vehicles to the PM lidar signal under real-world driving conditions. The relationship between the PM lidar signal and traffic activity (i.e., LD and HD traffic volumes) was examined using a time-series analysis technique, multilagged regression. The time-series model results indicate that the PM lidar signal in the current sampling period (PMt) depended on the level recorded in the previous three sampling periods (i.e., PMt-1, PMt-2, and PMt-3), the number of LD vehicles in the seventh past sampling period (LDt-7), and the number of HD vehicles measured 80 sec previous to the current sampling period (HDt-8). On a 10-sec period basis, the model results indicate that HD vehicles contributed, on average, 3 times more to above-road PM lidar signals than did LD vehicles. The observed lag in the relationship between vehicle types and the lidar signal 20 m above the road suggests that resuspended road dust, rather than tailpipe exhaust emissions, was the main source of the detected PM. Detection of road dust at such heights above the road suggests the need for investigating the processes governing the vertical transport and recycling of PM over the road as a function of vehicle dynamics under a range of meteorological conditions.  相似文献   

12.
INTRODUCTION: There is still interest in a unified methodology to quantify the mass of particulate material emitted into the atmosphere by activities inherent to open-pit mining. For the case of total suspended particles (TSP), the current practice is to estimate such emissions by developing inventories based on the emission factors recommended by the USEPA for this purpose. However, there are disputes over the specific emission factors that must be used for each activity and the applicability of such factors to cases quite different to the ones under which they were obtained. There is also a need for particulate matter with an aerodynamic diameter less than 10?μm (PM(10)) emission inventories and for metrics to evaluate the emission control programs implemented by open-pit mines. STANDARDIZED EMISSION INVENTORY METHODOLOGY: To address these needs, work was carried out to establish a standardized TSP and PM(10) emission inventory methodology for open-pit mining areas. The proposed methodology was applied to seven of the eight mining companies operating in the northern part of Colombia, home to the one of the world's largest open-pit coal mining operations (~70?Mt/year). RESULTS: The results obtained show that transport on unpaved roads is the mining activity that generates most of the emissions and that the total emissions may be reduced up to 72% by spraying water on the unpaved roads. Performance metrics were defined for the emission control programs implemented by mining companies. It was found that coal open-pit mines are emitting 0.726 and 0.180?kg of TSP and PM(10), respectively, per ton of coal produced. It was also found that these mines are using on average 1.148?m(2) of land per ton of coal produced per year.  相似文献   

13.
Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

14.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

15.
Source contributions to PM10 and sulfate aerosol at McMurdo Station, Antarctica during the austral summers of 1995-1996 and 1996-1997 were estimated using Chemical Mass Balance (CMB) receptor modeling. The average PM10 (particles with aerodynamic diameters less than 10 microm) concentration at Hut Point, located less than 1 km downwind of downtown McMurdo, was 3.4 microg/m3. Emissions profiles were determined for potentially important aerosol source types in McMurdo: exposed soil, power generation, space heating, and surface vehicles. Soil dust, sea salt, combustion emissions, sulfates, marine biogenic emissions as methanesulfonate, and nitrates contributed 57%, 15%, 14%, 10%, 3%, and 1%, respectively, of average estimated PM10 at Hut Point (3.2 microg/m3). Soil dust, sea salt, and combustion sources contributed 12%, 8%, and 20%, respectively, of the average PM10 sulfate concentration of 0.46 microg/m3. Marine biogenic sources contributed 0.17 microg/m3 (37%). The remaining sulfate is thought to have come from emissions from Mt. Erebus or hemispheric pollution sources.  相似文献   

16.
Daily particle samples were collected in Chillán, Chile, at six urban locations from September 1, 2001, through September 30, 2003. Aerosol samples were collected using monitors equipped with a Sierra Andersen 246-b cyclone inlet on Teflon filters. Average concentrations of coarse particulate matter (PM10) for the 2001-2003 period ranged from 43.4 microg/m3 to 81.8 microg/m3 across the six sites. Annual PM10 concentration levels exceeded the European Union concentration limits. Mean PM10 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March). Average contributions to PM10 from organic matter, soil dust, nitrate (NO3-), elemental carbon, ammonium (NH4+), and sulfate (SO4(2-)) were 31%, 27%, 11%, 8%, 7%, and 5%, respectively. The chemical analyses indicated that carbonaceous substances were the most abundant components of PM10 in cold months, whereas crustal material was the most abundant component of PM10 during warm months. Higher concentration levels were observed in the downtown area suggesting a clear anthropogenic origin, whereas in the rural sites the source was mainly natural, such as resuspended soil dust associated with traffic on unpaved roads and agricultural activities.  相似文献   

17.
In this paper, the Gaussian Atmospheric Dispersion Modeling System (ADMS4) was coupled with field observations of surface meteorology and concentrations of several air quality indicators (nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM10) and sulfur dioxide (SO2)) to test the applicability of source emission factors set by the European Environment Agency (EEA) and the United States Environmental Protection Agency (USEPA) at an industrial complex. Best emission factors and data groupings based on receptor location, type of terrain and wind speed, were relied upon to examine model performance using statistical analyses of simulated and observed data. The model performance was deemed satisfactory for several scenarios when receptors were located at downwind sites with index of agreement 'd' values reaching 0.58, fractional bias 'FB' and geometric mean bias 'MG' values approaching 0 and 1, respectively, and normalized mean square error 'NMSE' values as low as 2.17. However, median ratios of predicted to observed concentrations 'Cp/Co' at variable downstream distances were 0.01, 0.36, 0.76 and 0.19 for NOx, CO, PM10 and SO2, respectively, and the fraction of predictions within a factor of two of observations 'FAC2' values were lower than 0.5, indicating that the model could not adequately replicate all observed variations in emittant concentrations. Also, the model was found to be significantly sensitive to the input emission factor bringing into light the deficiency in regulatory compliance modeling which often uses internationally reported emission factors without testing their applicability.  相似文献   

18.
Open beef cattle feedlots emit various air pollutants, including particulate matter (PM) with equivalent aerodynamic diameter of 10 microm or less (PM10); however limited research has quantified PM10 emission rates from feedlots. This research was conducted to determine emission rates of PM10 from large cattle feedlots in Kansas. Concentrations of PM10 at the downwind and upwind edges of two large cattle feedlots (KS1 and KS2) in Kansas were measured with tapered element oscillating microbalance (TEOM) PM10 monitors from January 2007 to December 2008. Weather conditions at the feedlots were also monitored. From measured PM10 concentrations and weather conditions, PM10 emission rates were determined using reverse modeling with the American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD). The two feedlots differed significantly in median PM10 emission flux (1.60 g/m2-day for KS1 vs. 1.10 g/m2-day for KS2) but not in PM10 emission factor (27 kg/1000 head-day for KS1 and 30 kg/1000 head-day KS2). These emission factors were smaller than published U.S. Environmental Protection Agency (EPA) emission factor for cattle feedlots.  相似文献   

19.
ABSTRACT

Road traffic is one of the main sources of particulate matter (PM) in the atmosphere. Despite its importance, there are significant challenges in the quantitative evaluation of its contribution to airborne concentrations. In order to propose effective mitigation scenarios, the proportions of PM traffic emissions, whether they are exhaust or non-exhaust emissions, should be evaluated for any given geographical location. In this work, we report on the first study to evaluate particulate matter emissions from all registered heavy duty diesel vehicles in Qatar. The study was applied to an active traffic zone in urban Doha. Dust samples were collected and characterized for their shape and size distribution. It was found that the particle size ranged from few to 600 μm with the dominance of small size fraction (less than 100 μm). In-situ elemental composition analysis was conducted for side and main roads traffic dust, and compared with non-traffic PM. The results were used for the evaluation of the enrichment factor and preliminary source apportionment. The enrichment factor of anthropogenic elements amounted to 350. The traffic source based on sulfur elemental fingerprint was almost 5 times higher in main roads compared with the samples from non-traffic locations. Moreover, PM exhaust and non-exhaust emissions (tyre wear, brake wear and road dust resuspension) were evaluated. It was found that the majority of the dust was generated from tyre wear with 33% followed by road dust resuspension (31%), brake wear (19%) and then exhaust emissions with 17%. The low contribution of exhaust PM10 emissions was due to the fact that the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies.

Implication: This study reports on the first results related to the evaluation of PM emission from all registered diesel heavy duty vehicles in Qatar. In-situ XRF elemental analysis from main, side roads as well as non-traffic dust samples was conducted. Several characterization techniques were implemented and the results show that the majority of the dust was generated from tyre wear, followed by road dust resuspension and then brake wear; whereas exhaust emissions were tremendously reduced since the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies. This implies that policy makers should place stringent measures on old vehicle license renewals and encourage the use of metro and public transportation.  相似文献   

20.
Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter < 10 microm (PM10) and < 2.5 microm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 microg/m(3). The median particle size downwind of a demolition site (17.3 microm) was significantly larger than background (3 microm). Specific activities are associated with realtime particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号