首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study explores the impact of five different types of methyl esters on polycyclic aromatic hydrocarbon (PAH), nitrated-PAH and oxygenated PAH emissions. The measurements were conducted on a chassis dynamometer, according to the European regulation. Each of the five different biodiesels was blended with EN590 diesel at a proportion of 10-90% v/v (10% biodiesel concentration). The vehicle was a Euro 3 compliant common-rail diesel passenger car. Emission measurements were performed over the NEDC and compared with those of the real traffic-based Artemis driving cycles. The experimental results showed that the addition of biodiesel led to some important increases in low molecular-weight PAHs (phenanthrene and anthracene) and to both increases and reductions in large PAHs which are characterised by their carcinogenic and mutagenic properties. Nitro-PAHs were found to reduce with biodiesel whereas oxy-PAH emissions presented important increases with the biodiesel blends. The impact of biodiesel source material was particularly clear on the formation of PAH compounds. It was found that most PAH emissions decreased as the average load and speed of the driving cycle increased. Cold-start conditions negatively influenced the formation of most PAH compounds. A similar trend was observed with particulate alkane emissions.  相似文献   

2.
Atmospheric aerosols of four aerodynamic size ranges were collected using high volume cascade impactors in an extremely busy roadway tunnel in Lisbon (Portugal). Dust deposited on the tunnel walls and guardrails was also collected. Average particle mass concentrations in the tunnel atmosphere were more than 30 times higher than in the outside urban background air, revealing its origins almost exclusively from fresh vehicle emissions. Most of the aerosol mass was concentrated in submicrometer fractions (65%), and polycyclic aromatic hydrocarbons (PAH) were even more concentrated in the finer particles with an average of 84% of total PAH present in sizes smaller than 0.49 μm. The most abundant PAH were methylated phenanthrenes, fluoranthene and pyrene. About 46% of the total PAH mass was attributed to lower molecular weight compounds (two and three rings), suggesting a strong influence of diesel vehicle emissions on the production of local particulate PAH. The application of diagnostic ratios confirmed the relevance of this source of PAH in the tunnel ambient air. Deposited dust presented PAH profiles similar to the coarser aerosol size range, in agreement with the predominant origin of coarser aerosol particles from soil dust resuspension and vehicle wear products.  相似文献   

3.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

4.
Emission samples for toxicity testing and detailed chemical characterization were collected from a variety of gasoline- and diesel-fueled in-use vehicles operated on the Unified Driving Cycle on a chassis dynamometer. Gasoline vehicles included normal particle mass (particulate matter [PM]) emitters (tested at 72 and 30 degrees F), "black" and "white" smokers, and a new-technology vehicle (tested at 72 degrees F). Diesel vehicles included current-technology vehicles (tested at 72 and 30 degrees F) and a high PM emitter. Total PM emission rates ranged from below 3 mg/mi up to more than 700 mg/mi for the white smoker gasoline vehicle. Emission rates of organic and elemental carbon (OC/EC), elements (metals and associated analytes), ions, and a variety of particulate and semi-volatile organic compounds (polycyclic aromatic hydrocarbons [PAH], nitro-PAH, oxy-PAH, hopanes, and steranes) are reported for these vehicles. Speciated organic analysis also was conducted on the fuels and lube oils obtained from these vehicles after the emissions testing. The compositions of emissions were highly dependent on the fuel type (gasoline vs. diesel), the state of vehicle maintenance (low, average, or high emitters; white or black smokers), and ambient conditions (i.e., temperature) of the vehicles. Fuel and oil analyses from these vehicles showed that oil served as a repository for combustion byproducts (e.g., PAH), and oil-burning gasoline vehicles emitted PAH in higher concentrations than did other vehicles. These PAH emissions matched the PAH compositions observed in oil.  相似文献   

5.
The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography–mass spectrometry (GC–MS) methodology.Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5–25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed.The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.  相似文献   

6.
The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number, and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC??50 and??70 °CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

Implications: NOx and particle emissions are dominant emissions of diesel engines and vehicles. New, biobased paraffinic fuels and modern engine technologies have been reported to lower both of these emissions. In this study, even further reductions were achieved with engine valve adjustment combined with novel hydrotreated vegetable oil (HVO) diesel fuel. This study shows that new paraffinic fuels offer further possibilities to reduce engine exhaust emissions to meet the future emission limits.

Supplementary Materials: Supplementary materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a complete list of analysed PAH compounds.  相似文献   

7.
Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration.

Implications:?The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.  相似文献   

8.
Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.  相似文献   

9.
A real-time monitoring methodology to determine diesel fine particles in diesel emissions has been evaluated. The range of particle size captured by the monitor was approximately 0.1 microm to 1 microm. DustTrak real-time monitors were connected to the dilution tunnel of the vehicle exhaust to measure the emissions during the vehicle tests under both dynamic and steady-state driving conditions, and concentration data were recorded every 5 sec. Test variation of the real-time monitoring among different test days was similar to that measured by traditional filter-based gravimetric method, whereas the repeatability of the monitor data within the same-day tests was better than that of gravimetric method. Correlations between the two methods were established for different fuels tested on a single light duty vehicle. When the emissions from the reference fuel was used to convert the monitor's response to diesel fuels, the levels determined by the real-time monitor were consistent with those measured by gravimetric method among different fuels tested. Use of the real-time monitor could provide information on the levels of fine particles that is more relevant to the public health than the total particles.  相似文献   

10.
Abstract

Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L?1, respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L?1, respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.  相似文献   

11.
Bottom sediment and suspended sediment samples from Hamilton Harbour (western Lake Ontario) and from a major tributary were profiled using a bioassay-directed fractionation approach. Sample extracts were fractionated using an alumina/Sephadex gel clean-up procedure to afford non-polar aromatic fractions which were characterized using chemical analyses and the Ames/microsome bacterial assay in Salmonella typhimurium strains YG1025 with the addition of oxidative metabolism (S9), and YG1024 without S9. Non-polar aromatic fractions of selected samples were separated by normal phase HPLC into 1-min fractions which were subjected to bioassay analyses. The bioassays using strain YG1025+S9, a TA100-type strain, were performed to assess genotoxicity arising from the presence of polycyclic aromatic hydrocarbons (PAH). Fractions which exhibited mutagenic activity contained PAH with molecular masses of 252, 276 and 278 amu; these fractions contained over 80% of the genotoxicity attributable to PAH. Individual compounds identified using Gas Chromatography-Mass Spectrometry analyses in these active fractions included benzo[a]pyrene, indeno[cd]pyrene and dibenz[a,h]anthracene. The YG1025+S9 mutagenic activity profiles were similar for all samples. Mutagenic activity profiles generated using strain YG1024-S9, a TA98-type strain sensitive to compounds characteristic of mobile source emissions, were very different. The mutagenic activities in strain YG1024-S9 were greatest for harbour-suspended sediment samples collected from sites impacted by a major tributary. Suspended sediments collected near areas known to contain high levels of coal tar-contamination in the bottom sediments contained higher levels of genotoxic PAH than suspended sediments collected from other areas of the harbour.  相似文献   

12.
Abstract

A real-time monitoring methodology to determine diesel fine particles in diesel emissions has been evaluated. The range of particle size captured by the monitor was ~0.1 μm to 1 μm. DustTrak real-time monitors were connected to the dilution tunnel of the vehicle exhaust to measure the emissions during the vehicle tests under both dynamic and steady-state driving conditions, and concentration data were recorded every 5 sec. Test variation of the real-time monitoring among different test days was similar to that measured by traditional filter-based gravi-metric method, whereas the repeatability of the monitor data within the same-day tests was better than that of gravimetric method. Correlations between the two methods were established for different fuels tested on a single light duty vehicle. When the emissions from the reference fuel was used to convert the monitor’s response to diesel fuels, the levels determined by the real-time monitor were consistent with those measured by gravimetric method among different fuels tested. Use of the real-time monitor could provide information on the levels of fine particles that is more relevant to the public health than the total particles.  相似文献   

13.
Emissions from 12 in-service heavy-duty buses powered by low- (LSD) and ultra low-sulfur (ULSD) diesel fuels were measured with the aim to characterize the profile of polycyclic aromatic hydrocarbons (PAHs) in the exhaust and to identify the effect of different types of fuels on the emissions. To mimic on-road conditions as much as possible, sampling was conducted on a chassis dynamometer at four driving modes, namely: mode 7 or idle (0% power), mode 11 (25% power), mode 10 (50% power) and mode 8 (100% power). Irrespective of the type of fuel used, naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, fluorene, fluoranthene and pyrene were found to be the dominant PAHs in the exhaust emissions of the buses. However, the PAH composition in the exhausts of ULSD buses were up to 91±6% less than those in the LSD buses. In particular, three- and four-ringed PAHs were more abundant in the later than in the former. Lowering of fuel sulfur content not only reduced PAH emission, but also decreased the benzo(a)pyrene equivalent (BAPeq) and hence the toxicity of the exhaust. Result from multicriteria decision-making and multivariate data analysis techniques showed that the use of ULSD afforded cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained by the use of LSD.  相似文献   

14.
Multivariate statistical techniques were used to investigate source apportionment and source/sink relationships for polycyclic aromatic hydrocarbons (PAHs) in the urban and adjacent coastal atmosphere of Chicago/Lake Michigan in 1994–1995. The PAH signatures for the atmospheric particle phase, surface water particle phase and sediments indicate that atmospheric deposition is the major source of PAHs to the sediments and water column particulate phase of Lake Michigan. The PAH signature for the atmospheric gas phase and water dissolved phase indicate an intimate linkage between the lake and its overlying atmosphere. A modified factor analysis-multiple regression model was successfully applied to the source apportionment of atmospheric PAHs (gas+particle). Coal combustion accounted for 48±5% of the ΣPAH concentration in both the urban and adjacent coastal atmosphere, natural gas combustion accounted for 26±2%, coke ovens accounted for 14±3%, and vehicle emissions (gas+diesel) accounted for 9±4%. Each is an identified source category for the region. These results are consistent with the mix of fossil fuel combustion sources and ratios of indicator PAHs.  相似文献   

15.
The behavior of nanoparticles (NPs) in the roadside atmosphere has not been clarified because it involves unstable volatile components. It was thought that the number concentration (NC) and NP size distribution change due to variations in traffic conditions (e.g., traffic volume [TV], velocity, acceleration, etc.) near the intersection, but the SMPS (Scanning Mobility Particle Sizer) lacks the temporal resolution required for rapid, transient measurements. Using a fast-response aerosol spectrometer capable of providing near-instantaneous particle NC measurements in real time, the behavior of NPs during one signal cycle became clear, and it was understood that the effect of condensation/evaporation processes is important, in addition to coagulation. As for the relation of the NC in proportion to the TV, this did not show a constant line but rather a hysteresis curve during the signal cycle, because the gas-particle equilibrium state at the roadside atmosphere was variable. Using two points of simultaneous measurement and on-board measurement, the behavior of NPs could be confirmed in response to the characteristics of automotive exhaust, which varied due to the on-road driving state, engine conditions, vehicle position, or traffic light timing, at the intersection. The on-board measurement of NP size distribution in the exhaust plume from a diesel vehicle was carried out as a reference for direct particle emissions, compared with the roadside NPs. The coagulation/deposition model simulation using the direct particle emissions underestimated the NCs compared with the observed values. The gas-particle equilibrium model could explain the underestimated portion caused by the condensation of ambient VOC (Volatile Organic Compounds) onto the particles. If this hypothesis is correct, the condensable VOC amount in the roadside atmosphere is suggested to be very large.  相似文献   

16.
An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NOx, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h−1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h−1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency.  相似文献   

17.
Sidhu S  Graham J  Striebich R 《Chemosphere》2001,42(5-7):681-690
Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.  相似文献   

18.
Airborne fine particle mass concentrations in Southern California have declined in recent years. Trends in sulfate and elemental carbon (EC) particle concentrations over the period 1982-1993 are consistent with this overall improvement in air quality and help to confirm some of the reasons for the changes that are seen. Fine particle sulfate concentrations have declined as a strict sulfur oxides (SOx) emission control program adopted in 1978 was implemented over time. Fine particle elemental (black) carbon concentrations have declined over a period when newer diesel engines and improved diesel fuels have been introduced into the vehicle fleet. Organic aerosol concentrations have not declined as rapidly as the EC particle concentrations, despite the fact that catalyst-equipped cars having lower particle emission rates were introduced into the vehicle fleet alongside the diesel engine improvements mentioned above. This situation is consistent with the growth in population and vehicle miles traveled in the air basin over time. Fine particle ammonium nitrate in the Los Angeles area atmosphere contributes more than half of the fine aerosol mass concentration on the highest concentration days of the year, emphasizing both the need for accurate aerosol nitrate measurements and the likely importance of deliberate control of aerosol nitrate as a part of any serious further fine particle control program for the Los Angeles area.  相似文献   

19.
Air monitoring in the San Francisco Bay Area was carried out to measure outdoor community air concentrations of polycyclic aromatic hydrocarbons (PAH) and mutagenic activity (mutagenicity) in particulate organic matter (POM). Monitoring began in 1979 and is currently conducted at six stations. PAH and mutagenicity tests were performed on organic extracts prepared from high volume (hi-vol) filters composited every four months, by meterological season. PAH were determined by high pressure liquid chromatography (HPLC) with fluorescence and ultraviolet detection. Mutagenicity was measured in the Ames Salmonella bioassay using strain TA98 with and without metabolic activation. The nine-year mean concentration of benzo(a)pyrene (BaP) was 0.4 ng/m3. The mutagenicity of this amount of BaP accounted for only about 0.2% of the observed mutagenicity in POM and other measured PAH accounted for even less. Concentrations of PAH and mutagenicity were three to nine times higher during the winter than during other seasons. Year-to-year wintertime trends in several PAH were also seen. Early in the 1980s, winter concentrations of BaP and benzo (g,h,i)perylene increased. However since the mid-1980's, their concentrations have fallen. The decrease in PAH concentrations may be the result of an increasing proportion of vehicles with relatively low organic emissions. In contrast to PAH, mutagenicity did not show significantly year-to-year time trends.  相似文献   

20.
The paper describes the incorporation of actual emission measurements and future emission standards into the emission model ‘NEMO’ (Network Emission Model). This model is then applied to make predictions on vehicle emission levels on basis of the Austrian fleet composition until 2020. The output is compared to the results based on the most common emission tool for the calculation of vehicle emissions in Central Europe – the recent version (2.1) of the ‘Handbook Emission Factors for Road Transport’. The discussion is focused on NOx and particulate matter (PM), since these pollutants are considered to be the most critical for the local air quality level.The NOx emission levels of recent modern diesel vehicle generations observed in several real world driving conditions were observed to be clearly higher than demanded in the type approval procedure. Due to the growing number of modern diesel engine concepts equipped with coated catalytic exhaust after treatment, the fraction of NO2 of the total tailpipe NOx emissions is predicted to continue to increase in the next few years. Bearing in mind the upcoming tightening of the NO2 air quality limits and the steady increase of traffic volumes, excesses of the NO2 air quality limits at roadside locations have to be expected to an increasing extent for the beginning of the next decade. The issue of particle emissions originated from the diesel engine combustion process can be regarded as being technically solved due to the extensive introduction of diesel particle filters in the vehicle fleet if these systems will prove a high efficiency over the entire vehicle life in real world operation conditions. However, PM emissions from road transport will continue to be in the focus of public attention due to particle emissions caused by dust re-suspension and abrasion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号