首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transport in macroporous clayey till of bromide and 25 organic compounds typical of creosote was studied using a large intact soil column. The organic compounds represented the following groups: polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, monoaromatic hydrocarbons (BTEXs), and heterocyclic compounds containing oxygen, nitrogen or sulphur in the aromatic ring structure (NSO-compounds). The clayey till column (0.5 m in height and 0.5 m in diameter) was obtained from a depth of 1–1.5 m at an experimental site located on the island of Funen, Denmark. Sodium azide was added to the influent water of the column to prevent biodegradation of the studied organic compounds. For the first 24 days of the experiment, the flow rate was 219 ml day−1 corresponding to an infiltration rate of 0.0011 m day−1. At this flow rate, the effluent concentrations of bromide and the organic compounds increased very slowly. The transport of bromide and the organic compounds were successfully increased by increasing the flow rate to 1353 ml day−1 corresponding to 0.0069 m day−1. The experiment showed that the transport of low-molecular-weight organic compounds was not retarded relative to bromide. The high-molecular-weight organic compounds were retarded significantly. The influence of sorption on the transport of the organic compounds through the column was evaluated based on the observed breakthrough curves. The observed order in the column experiment was, with increasing retardation, the following: benzene=pyrrole=toluene=o-xylene=p-xylene=ethylbenzene=phenol=benzothiophene=benzofuran<naphthalene<1-methylpyrrole<1-methylnaphthalene=indole=o-cresol=quinoline<3,5-dimethylphenol=2,4-dimethylphenol<acridine<carbazole<2-methylquinoline<fluorene<dibenzofuran<phenanthrene=dibenzothiophene. This order could not be predicted from regularly characteristics as octanol/water-distribution coefficients of the organic compounds but only from experimentally determined data. The results indicate that a thin clayey till cover of the type described in this paper does not protect groundwater against contamination by low-molecular-weight organic compounds.  相似文献   

2.
The sorption and desorption of heterocyclic organic compounds in a complex multisolute system to a natural clayey till was investigated. The composition of the solutes reflect a simplified composition of an aqueous phase in contact with coal tar. Sorption was studied for two ratios (s:l) of clayey till (solid) to aqueous phase (liquid). The effect of the complex mixture of solutes on sorption of the four heterocyclic compounds: benzofuran, dibenzofuran, benzothiophene, and dibenzothiophene is evaluated by comparison with their sorption measured in single-solute systems. Sorption of the four compounds is affected by the complex mixture, with sorption decreases for all four compounds at high s:l ratio indicating competitive sorption. The effect on sorption of the individual compounds is not related to solubility or hydrophobicity of the compounds. Freundlich-type isotherms are observed for all compounds in the high s:l-ratio experiments, but for the most hydrophobic compounds isotherms are close to linear. The sorption of N-compounds and benzofuran is apparently influenced by cation exchange and dipole–dipole attraction to clay minerals. At high concentrations a dramatic increase in the sorption of the most strongly sorbing compounds is observed in the low s:l-ratio experiment. The dramatic increase in sorption appears to be a result of multimolecular layer sorption or condensation on surfaces in the clayey till at high surface density of organic compounds, and the data are fitted by BET (Brunauer, Emmet, and Teller) type 2 isotherms. The increase may or may not be induced by the presence of N-heterocyclic compounds sorbed by cation exchange and dipole–dipole attraction. The desorption of the compounds was studied for the low s:l ratio where multimolecular layer formation apparently had occurred. Partially irreversible sorption, hysteric Langmuir type desorption with isotherms of very high Kl coefficient, or behaviour reflecting dissolution of a condensed phase is observed.  相似文献   

3.
Size-segregated samples of urban particulate matter (<0.95, 0.95–1.5, 1.5–3.0, 3.0–7.5, >7.5 μm) were collected in Thessaloniki, northern Greece, during winter and summer of 2007–2008, in order to study the size distribution of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs) including n-alkanes and the isoprenoids pristane and phytane, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). All organic compounds were accumulated in the particle size fraction <0.95 μm particularly in the cold season. Particulate matter displayed a bimodal normalized distribution in both seasons with a stable coarse mode located at 3.0–7.5 μm and a fine mode shifting from 0.95–1.5 μm in winter to <0.95 μm in summer. Unimodal normalized distributions, predominant at 0.95–1.5 μm size range, were found for most organic compounds in both seasons, suggesting gas-to-particle transformation after emission. A second minor mode at larger particles (3.0–7.5 μm) was observed for C19 and certain OCPs suggesting redistribution due to volatilization and condensation.  相似文献   

4.
Absorption cross sections of 24 volatile and non-volatile derivatives of benzene in the ultraviolet (UV) and the infrared (IR) regions of the electromagnetic spectrum have been determined using a 1080 l quartz cell. For the UV a 0.5 m Czerny-Turner spectrometer coupled with a photodiode array detector (spectral resolution 0.15 nm) was used. IR spectra were recorded with an FT-IR spectrometer (Bruker IFS-88, spectral resolution 1 cm-1). Absolute absorption cross sections and the instrument function are given for the UV, while for the IR, absorption cross sections and integrated band intensities are reported.The study focused primarily on the atmospherically relevant methylated benzenes (benzene, toluene, o-xylene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, styrene) and their ring retaining oxidation products (benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol and (E,Z)- and (E,E)-2,4-hexadienedial).The UV absorption cross sections reported here can be used for the evaluation of DOAS spectra (Differential Optical Absorption Spectroscopy) for measurements of the above compounds in the atmosphere and in reaction chambers, while the IR absorption cross sections will primarily be useful in laboratory studies on atmospheric chemistry, where FT-IR spectrometry is an important tool.  相似文献   

5.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   

6.
A 91-m transect was set up in an irrigated field near Las Cruces, New Mexico to obtain soil water tension and water content data to investigate their spatial variability. A total of 455 sampling points were monitored along a grid consisting of 91 stations placed 1 m apart by 5 depths per station (at 0.3, 0.6, 0.9, 1.2 and 1.5 m below the surface). Post-irrigation tension and wetness measurements were recorded over 45 days at 11 time periods. Soil water tension was measured with tensiometers using a hand-held pressure transducer. A neutron probe was used to obtain volumetric water content. Using the observed wetness and tension data, unsaturated hydraulic conductivity values were derived (using a cubic spline function to estimate the gradient), and an exponential model was used to fit the calculated conductivity-tension curves to obtain hydraulic conductivity parameter values. The spatial and temporal variability of wetness, tension, saturated hydraulic conductivity and pore-size distribution parameters, and texture at the 0.3-m depth were examined using geostatistical techniques.The exponential model was found to inadequately describe the hydraulic conductivity/tension relationship for the full range of tension, particularly in the tension range near saturation. The derived values of the saturated hydraulic conductivity parameter were much greater than expected and do not correspond to reasonable saturated hydraulic conductivity values.All of the soil parameters studied exhibited large spatial variability horizontally and vertically in the field. Ranges of dependence determined from semivariogram analysis over the 44-day drainage period are 3–32 m for wetness, 6–34 m for soil water tension, 5–35 m for natural log of saturated hydraulic conductivity parameters, 5–11 m for pore-size distribution parameter, and 8–24 m for percent sand, silt and clay at the 0.3 m depth. An alternate hole-effect model is suggested to describe the texture semivariograms.It was determined that the variance of volumetric water content generally increased at each depth over the measured time periods, which is consistent with certain past field studies and a stochastic analysis of unsaturated flow in heterogeneous soils. Future research is recommended relating soil texture to soil hydrologic parameters with the goal of predicting soil behavior with less extensive sampling schemes.  相似文献   

7.
The biodegradation of 3,4, 2,4, 2,3, 2,6 and 3,5-di-methylphenol in combination with phenol andp-cresol by axenic and mixed cultures of bacteria was investigated. The strains, which degrade phenol andp-cresol through different catabolic pathways, were isolated from river water continuously polluted with phenolic compounds of leachate of oil shale semicoke ash heaps. The proper research of degradation of 2,4 and 3,4-di-methylphenol in multinutrient environments was performed. The degradation of phenolic compounds from mixtures indicated a flux of substrates into different catabolic pathways. Catechol 2,3-dioxygenase activity was induced by dimethylphenols inPseudomonas mendocina PC1, wheremeta cleavage pathway was functional during the degradation ofp-cresol. In the case of strains PC18 and PC24 ofP. fluorescens, the degradation ofp-cresol occurred via the protocatechuateortho pathway and the key enzyme of this pathway,p-cresol methylhydroxylase, was also induced by dimethylphenols. 2,4 and 3,4-dimethylphenols were converted into the dead-end products 4-hydroxy-3-methylbenzoic acid and 4-hydroxy-2-methylbenzoic acid. In the degradation of 3,4-dimethylphenol, the transient accumulation of 4-hydroxy-2-methylbenzaldehyde repressed the consumption of phenol from substrate mixtures. A mixed culture of strains with different catabolic types made it possible to overcome the incompatibilities at degradation of studied substrate mixtures.  相似文献   

8.
A volume of sand containing coal tar creosote was emplaced below the water table at CFB Borden to investigate natural attenuation processes for complex biodegradable mixtures. Coal tar creosote is a mixture of more than 200 polycyclic aromatic hydrocarbons, heterocyclic compounds and phenolic compounds. A representative group of seven compounds was selected for detailed study: phenol, m-xylene, naphthalene, phenanthrene, 1-methylnaphthalene, dibenzofuran and carbazole. Movement of groundwater through the source led to the development of a dissolved organic plume, which was studied over a 4-year period. Qualitative plume observations and mass balance calculations indicated two key conclusions: (1) compounds from the same source can display distinctly different patterns of plume development and (2) mass transformation was a major influence on plume behaviour for all observed compounds.  相似文献   

9.
Abstract

The city of Missoula is located in a high mountain valley (elevation 3200 ft) in western Montana and contains one of the largest populations in the entire Rocky Mountain Region completely enclosed by mountains. During the 2000/2001 Missoula Valley Sampling Program, ambient levels of 61 semivolatile organic compounds (SVOCs) and 54 volatile organic compounds (VOCs) were originally quantified before refining the analytical program to 28 of the most prominent SVOCs and VOCs found in the Missoula Valley airshed. These compounds were measured over 24-hr periods at two locations throughout an entire year. This study provides the first, comprehensive appraisal of the levels of SVOCs and VOCs measured simultaneously throughout all four seasons at two locations in the Missoula Valley, including those levels measured during the 2000 Montana wildfire season. Generally, SVOC levels were comparable between both sides of the Missoula Valley. However, there were nearly double the amount of VOCs measured at the more urban Boyd Park site compared with the rural Frenchtown sampling site, a result of the greater number of automobiles on the eastern side of the Valley. SVOCs and VOCs were measured at their highest levels of the sampling program during the winter. Forest fire smoke samples collected during the summer of 2000 showed significant increases in SVOC phenolic compounds, including phenol, 2-methylphenol, 4-methylphenol, and 2,4-dimethylphenol. Although there were modest increases in some of the other SVOCs and VOCs measured during the fire season, none of the increases were as dramatic as the phenolics.  相似文献   

10.
Aniline and 2,4,6-trinitrotoluene (TNT) were equilibrated with particulate (POM) and dissolved organic matter (DOM) from an organic soil at different compositions of adsorbed major cations (Na, Al) and pH (aniline: 3.7–5.1, TNT: 4.8–5.0). After separation of POM, concentrations of 14C-labelled aniline and TNT* (including TNT degradation products) were determined in DOM size fractions using size-exclusion chromatography (SEC) and UV-detection. Concentrations in the <3.5 kDa size fraction were 2.8–6.0 and 8.5–9.5 times higher for aniline and TNT*, respectively, as compared to the >40 kDa fraction. Thus, both aniline and TNT* were preferentially associated to the smallest DOM size fraction. The significant binding to DOM (similar extent as to POM) and the fact that the <3.5 kDa DOM fraction was less susceptible to flocculation by major metals suggests that the mobility of aniline and TNT is highly affected by the solubility of soil organic matter.  相似文献   

11.
Ambient aerosols were sampled at three selected sites in the coastal region of central Taiwan to obtain composition data for use in receptor modeling. All the samples were analyzed for 20 elements with an x&#x002D;ray fluorescence spectrometer. The mass percentage of sulfates in particle samples was determined by ion chromatography, and mass percentages of elemental carbon (EC) and organic carbon (OC) were determined by an elemental analyzer.

Because the three sampling sites were located within 25 km of each other, the average chemical compositions were similar for particle samples taken at the three sites on the same day. However, the variation in composition from day to day was significantly influenced by wind direction and change in local sources, such as the burning of agricultural wastes. The abundant species in the coarse fraction (2.5&#x002D;10 µm) were Al (0.5&#x002D;4.0 µg/m3), Cl (0.1&#x002D;4.8 µg/m3), Ca (0.2&#x002D;3.4 µg/m3), Fe (0.2&#x002D;2.8 µg/ m3), and K (0.1&#x002D;1.4 µg/m3), while the abundant species in the fine fraction (&#x003C;2.5 µm) were S (0.3&#x002D;3.5 µg/m3), Cl (0.01&#x002D;1.9 µg/ m3), K (0.04&#x002D;0.98 µg/m3), organic carbon (0.01&#x002D;10.5 µg/m3), elemental carbon (0&#x002D;10.7 µg/m3), and sulfates (1.2&#x002D;15.7 µg/m3).

Calculations for source apportionment were carried out using the CMB7 software developed by the U.S. Environmental Protection Agency (EPA). The main sources for the coarse fraction of ambient aerosols in the region were found to be marine aerosol, coal and fuel oil combustion, burning of agricultural wastes, and paved road dust. The main sources for the fine fraction were burning of agricultural wastes, diesel exhaust, coal and oil combustion, and sulfates. Source apportionment for the fine fraction was relatively sensitive to the types of sources selected for calculations and the compositions of the sources. The problem can be ameliorated by careful examination of possible sources and by use of local source profiles.  相似文献   

12.
Ambient aerosols were sampled at three selected sites in the coastal region of central Taiwan to obtain composition data for use in receptor modeling. All the samples were analyzed for 20 elements with an x&#x0002D;ray fluorescence spectrometer. The mass percentage of sulfates in particle samples was determined by ion chromatography, and mass percentages of elemental carbon (EC) and organic carbon (OC) were determined by an elemental analyzer.

Because the three sampling sites were located within 25 km of each other, the average chemical compositions were similar for particle samples taken at the three sites on the same day. However, the variation in composition from day to day was significantly influenced by wind direction and change in local sources, such as the burning of agricultural wastes. The abundant species in the coarse fraction (2.5&#x0002D;10 µm) were Al (0.5&#x0002D;4.0 µg/m3), Cl (0.1&#x0002D;4.8 µg/m3), Ca (0.2&#x0002D;3.4 µg/m3), Fe (0.2&#x0002D;2.8 µg/ m3), and K (0.1&#x0002D;1.4 µg/m3), while the abundant species in the fine fraction (<2.5 µm) were S (0.3&#x0002D;3.5 µg/m3), Cl (0.01&#x0002D;1.9 µg/ m3), K (0.04&#x0002D;0.98 µg/m3), organic carbon (0.01&#x0002D;10.5 µg/m3), elemental carbon (0&#x0002D;10.7 µg/m3), and sulfates (1.2&#x0002D;15.7 µg/m3).

Calculations for source apportionment were carried out using the CMB7 software developed by the U.S. Environmental Protection Agency (EPA). The main sources for the coarse fraction of ambient aerosols in the region were found to be marine aerosol, coal and fuel oil combustion, burning

of agricultural wastes, and paved road dust. The main sources for the fine fraction were burning of agricultural wastes, diesel exhaust, coal and oil combustion, and sulfates. Source apportionment for the fine fraction was relatively sensitive to the types of sources selected for calculations and the compositions of the sources. The problem can be ameliorated by careful examination of possible sources and by use of local source profiles.  相似文献   

13.
The city of Missoula is located in a high mountain valley (elevation 3200 ft.) in western Montana and contains one of the largest populations in the entire Rocky Mountain Region completely enclosed by mountains. During the 2000/2001 Missoula Valley Sampling Program, ambient levels of 61 semivolatile organic compounds (SVOCs) and 54 volatile organic compounds (VOCs) were originally quantified before refining the analytical program to 28 of the most prominent SVOCs and VOCs found in the Missoula Valley airshed. These compounds were measured over 24-hr periods at two locations throughout an entire year. This study provides the first, comprehensive appraisal of the levels of SVOCs and VOCs measured simultaneously throughout all four seasons at two locations in the Missoula Valley, including those levels measured during the 2000 Montana wildfire season. Generally, SVOC levels were comparable between both sides of the Missoula Valley. However, there were nearly double the amount of VOCs measured at the more urban Boyd Park site compared with the rural Frenchtown sampling site, a result of the greater number of automobiles on the eastern side of the Valley. SVOCs and VOCs were measured at their highest levels of the sampling program during the winter. Forest fire smoke samples collected during the summer of 2000 showed significant increases in SVOC phenolic compounds, including phenol, 2-methylphenol, 4-methylphenol, and 2,4-dimethylphenol. Although there were modest increases in some of the other SVOCs and VOCs measured during the fire season, none of the increases were as dramatic as the phenolics.  相似文献   

14.
The major ion and trace metal geochemistry of a septic system plume in a shallow sand aquifer was characterized to assess geochemical processes controlling the transport of nutrients and their release to a nearby wetland. The plume was generated from a 16-year-old tile bed, and is more than 60 m long, 40 m wide and 7 m thick. The groundwater pH at the site is near neutral, but up to 0.4 units lower in the plume core as a result of H+ generated from NH3 and DOC oxidation in the unsaturated zone. The plume can be divided into distinct redox zones, which show differences in nutrient mobility. Proximal to the tile bed, there is a shallow suboxic zone, with intermediate Eh values (>400 mV), low concentrations of dissolved oxygen (<1.0 mg/l), and elevated concentrations of Mn (1–3 mg/l) and nutrients (10–80 mg/l NO3–N, 1–15 mg/l NH3–N, 0.1–1.5 mg/l PO4–P, 6–13 mg/l dissolved organic carbon). At the base of the aquifer, there is a reduced zone (Eh<200 mV) with elevated concentrations of Fe (1–14 mg/l), PO4 and NH3, but negligible concentrations of NO3 (<0.01 mg/l N). Distal from the tile bed, the shallow groundwater is suboxic to oxic, and has elevated concentrations of NO3 and NH3, but negligible PO4. In the lower reduced zone, elevated concentrations of PO4 occur up to 60 m away. The release of groundwater containing even very low concentrations of PO4 (<0.02 mg/l P) can lead to the development of eutrophic conditions in surface water bodies. Geochemical calculations indicate that, in the Mn-rich zone, the groundwater is close to saturation or supersaturated with respect to hydroxyapatite, rhodochrosite, calcite and ferrihydrite. In the reduced zone, the groundwater is close to saturation or supersaturated with respect to hydroxyapatite, vivianite, calcite and siderite. Formation of these phases, or related phases, are likely limiting the concentrations of dissolved PO4, Fe and Mn and controlling the geochemical evolution of the plume.  相似文献   

15.
In the Ellen catchment on the Pinjarra Plain, NE of Perth in Western Australia, cadmium from fertilisers is starting to leach from soils. About 70% of surface soils in the Ellen catchment are sandy and often on top of a shallow ephemeral water table. Adsorption of Cd in the sandy soils of the Ellen catchment was studied by batch adsorption and by leaching small columns of soil. Adsorption of Cd increases linearly with increasing soil organic matter content and exponentially with increasing pH. Cadmium is significantly mobilised in the sandy soils by dissolved organic matter.The capacity of most of the sandy soils in the Ellen catchment to adsorb phosphate from fertiliser has been saturated. Resulting concentrations in Ellen Brook average 500 μg L−1 P. Cadmium is adsorbed more strongly in the sandy soils than phosphate and is just starting to leach into Ellen Brook. From a comparison of Cd/P ratios in water, soils and fertiliser, cadmium concentrations in Ellen Brook are estimated to be at 10–30% of their maximum for complete breakthrough from soils. Present concentrations of Cd in Ellen Brook average 0.1 μg L−1 and are estimated to approach the maximum for complete breakthrough in 100 yr. Maximum Cd concentrations in Ellen Brook could range from 0.6 to 2 μg L−1, depending on rates of input with fertiliser and future increases in agricultural land use in the catchment.Breakthrough curves, resulting from leaching Cd through small columns of sandy soil, indicate that adsorption significantly increases the effective hydrodynamic dispersion of Cd. Longitudinal dispersivities, measured at pore-water velocities of 0.7–14 m day−1, were 5 cm for Cd and 0.1–0.2 cm for chloride. The much greater dispersion of Cd in the sandy soils than of chloride is shown not to be caused by non-equilibrium adsorption.  相似文献   

16.
A field experiment was performed in an aquifer in order to study multicomponent cation-exchange processes under natural flow conditions. The aquifer is a glacial outwash plain with sandy aquifer material having a cation-exchange capacity (CEC) of 1.0 meg/100 g. A continuous injection of groundwater spiked with sodium and potassium as chlorides was accomplished over 37 days to resemble leachate contamination from landfills. The plume was monitored by sampling in a dense spatial network (length 100 m, width 20 m) over a period of 2.5 years in order to obtain breakthrough curves and spatial contour maps of the chemical compounds. Na and especially K showed a substantial retardation caused by cation-exchange processes despite the low CEC of the aquifer material. The average velocity of K+ was only 10% of the velocity of chloride (0.7 m day−1). The relative migration velocity of Na+ was not a constant in the plume, but apparently influenced by dilution. Ca2+ and Mg2+ were expelled from the cation-exchange sites of the aquifer material and subsequently transported with the same velocity as chloride. The breakthrough curves of the various compounds showed multiple peaks and low concentration zones. It was concluded by calculations with PHREEQE that changes in calcite equilibrium may occur in the lower part of the aquifer, while complexation processes seem to be of no importance. Cation exchange is then the most important process in this field experiment, and further evaluation of the data by a geochemical transport model including cation exchange is recommended.  相似文献   

17.
ABSTRACT

Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 μm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of ~0.5 μm.  相似文献   

18.
Two measurement campaigns of volatile organic compounds (VOC) were carried out in the industrial city of Dunkerque, using Radiello passive samplers during winter (16–23 January) and summer (6–13 June) 2007. 174 compounds were identified belonging to six chemical families. Classifying sampling sites with similar chemical profiles by hierarchical ascending classification resulted in 4 groups that reflected the influence of the main industrial and urban sources of pollution. Also, the BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) quantification allowed us to map their levels of concentration. Benzene and toluene (BT) showed high concentrations in Northern Dunkerque reflecting the influence of two industrial plants. Differences among spatial distributions of the BT concentrations over contrasted meteorological conditions were also observed. An atypical ratio of T/B in the summer samples led us to investigate the BTEX origins shedding light on the contribution of pollutants transported across various zones of VOC emissions situated in Europe.  相似文献   

19.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

20.
Aerosol matter in the size range <2 μm was collected in a Berner impactor and subsequently analysed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometry. Owing to the low electron beam energy of 5 keV (occasionally 10 keV), analysis was restricted to elements with atomic numbers 20 (Ca). Sub-micrometer aerosol matter was found to contain mostly S, O, and C as well as some K and Ca. Nitrogen appeared to escape detection, probably due to bombardment-induced sublimation of NO3 and NH4. During sampling at low to moderate relative humidity (<60%) the sulphur-rich fraction of the aerosol matter (most likely sulphates) regrew in the form of microcrystals with sizes up to 10 times larger than the mean aerodynamic diameter of the respective impactor stage. By contrast, when sampling during periods in course of which the relative humidity exceeded 70%, the aerosol matter regrew in the form of extended amorphous agglomerates. The aerosol deposits also contained large numbers of carbon nanoparticles, well separated from the regrown sulphate-rich matter. The nanoparticles were similar in size (20–40 nm), much smaller than the equivalent aerodynamic diameter of the impacting particles (63 nm–2 μm). Presumably, the carbon nanoparticles constituted the core of larger air-borne particles covered with sulphates (as well as with nitrates and organic carbon). The regrown microcrystals disappeared rapidly under electron bombardment at high current density, an observation that indicates high volatility at elevated temperatures. Aerosol matter collected in the size range between 1 and 2 μm contained large fractions of particles made of O, Si, P, K, and Ca (oxides). These particles were highly resistant to electron bombardment (hard) and showed little or no evidence for agglomeration or regrowth. After removing the soluble (acidic) material from the collected aerosol matter, only carbon nanoparticles and hard coarse particles were left behind. The observation of agglomerated or crystallized “soft” aerosol matter in combination with phase separation of carbon nanoparticles lends further support to the assertion that it is not possible to collect useful quantities of fine and ultrafine aerosol particles with as-suspended morphology. Some implications for health-related research are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号