首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Patterns of ozone uptake were related to physiological, morphological, and phenological characteristics of different-sized black cherry trees (Prunus serotina Ehrh.) at a site in central Pennsylvania. Calculated ozone uptake differed among open-grown seedlings, forest gap saplings, and canopy trees and between leaves in the upper and lower crown of saplings and canopy trees. On an instantaneous basis, seedling leaves had the greatest ozone uptake rates of all tree size classes due to greater stomatal conductance and higher concentrations of ozone in their local environment. A pattern of higher stomatal conductance of seedlings was consistent with higher incident photosynthetically-active radiation, stomatal density, and predawn xylem water potentials for seedlings relative to larger trees. However, seedlings displayed an indeterminate pattern of shoot growth, with the majority of their leaves produced after shoot growth had ceased for canopy and sapling trees. Full leaf expansion occurred by mid-June for sapling and canopy trees. Because many of their leaves were exposed to ozone for only part of the growing season, seedlings had a lower relative exposure over the course of the growing season, and subsequently lower cumulative uptake, of ozone than canopy trees and a level of uptake similar to upper canopy leaves of saplings. Visible injury symptoms were not always correlated with patterns in ozone uptake. Visible symptoms were more apparent on seedling leaves in concurrence with their high instantaneous uptake rates. However, visible injury was more prevalent on leaves in the lower versus upper crown of canopy trees and saplings, even though lower crown leaves had less ozone uptake. Lower crown leaves may be more sensitive to ozone per unit uptake than upper crown leaves because of their morphology. In addition, the lower net carbon uptake of lower crown leaves may limit repair and anti-oxidant defense processes.  相似文献   

2.
The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (psi(L)) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g(wv)) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P(n)), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P < 0.05). The inconsistent differences in gas exchange response within the same crowns of ash and the uncoupling relationship between g(wv) and P(n) demonstrate the strong influence of heterogeneous environmental conditions within forest canopies.  相似文献   

3.
Local ozone concentration and visible foliar injury were measured over the 1994 growing season on open-grown black cherry (Prunus serotina Ehrh.) trees of varying size (age) within forest stands and adjacent openings at a site in north-central Pennsylvania. Relationships were determined between visible ozone injury and ozone exposure, as well as calculated between injury and ozone uptake expressed as the product of stomatal conductance and ozone concentration. In addition, simultaneous measurements of visible symptoms and leaf gas exchange were also conducted to determine the correlation between visible and physiological injury and ozone exposure. By September, the amount of leaf area affected by visible foliar ozone injury was greatest for seedlings (46%), followed by canopy trees (20%) and saplings (15%). A large amount of variability in foliar ozone symptom expression was observed among trees within a size class. Sum40 and Sum60 (ozone concentration > 40 and > 60 nl liter(-1)) cumulative exposure statistics were the most meaningful indices for interpretation of foliar injury response. Seedlings were apparently more sensitive to ozone injury than larger trees because their higher rates of stomatal conductance resulted in higher rates of ozone uptake. Seedlings also had higher rates of early leaf abscission than larger trees with an average of nearly 30% of the leaves on a shoot abscised by 1 September compared to approximately 5% for larger trees. However, per unit ozone uptake into the leaf, larger trees exhibited larger amounts of foliar injury. The amount of visible foliar injury was negatively correlated (r(2) = 0.82) with net photosynthetic rates, but was not related to stomatal conductance. Net photosynthesis and stomatal conductance thus became uncoupled at high levels of visible foliar injury.  相似文献   

4.
Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed.  相似文献   

5.
Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowiziixtrichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations.  相似文献   

6.
A survey for ozone-induced foliar injury of black cherry was conducted in mid-June 1995 within the Desierto de Los Leones National Park located southwest of Mexico City. Evaluations of the upper and lower tree crowns of 18 trees revealed evidence of significant upper surface stipple, leaf reddening and premature senescence on 72% of the trees. A general survey of an additional 169 trees disclosed that 41% exhibited similar symptoms. A gradient of increasing symptoms with increasing elevation was also evident. For the most part, asymptomatic trees were observed to be situated within well-shaded coves at the lower elevations with very few symptomatic trees present in these areas.  相似文献   

7.
Published ozone exposure-response relationships from experimental studies with young trees performed at different sites across Europe were re-analysed in order to test the performance of ozone exposure indices based on AOTX (Accumulated exposure Over a Threshold of X nmol mol(-1)) and AF(st)Y (Accumulated Stomatal Flux above a threshold of Y nmol m(-2) s(-1)). AF(st)1.6 was superior, as compared to AOT40, for explaining biomass reductions, when ozone sensitive species with differing leaf morphology were included in the analysis, while this was not the case for less sensitive species. A re-analysis of data with young black cherry trees, subject to different irrigation regimes, indicated that leaf visible injuries were more strongly related to the estimated stomatal ozone uptake, as compared to the ozone concentration in the air. Experimental data with different clones of silver birch indicated that leaf thickness was also an important factor influencing the development of ozone induced leaf visible injury.  相似文献   

8.
The incidence and severity of visible foliar ozone injury on black cherry (Prunus serotina) seedlings and saplings and tall milkweed (Asclepias exaltata) plants in Great Smoky Mountains National Park (GRSM) were determined by surveys along selected trails conducted during late summer 1992. The incidence (% injured plants) of ozone injury on black cherry was 47% and the percent injured leaves/injured plant and average leaf area injured were 43 and 6%, respectively. Maximum severity (avg. leaf area of the most severely injured leaf) was 12%. Black cherry seedlings and saplings exhibiting ozone injury were taller than non-injured plants. When insect feeding was present, it occurred 96% of the time on plants with ozone injury. Significantly more injury (p=0.007) on black cherry (% injured leaves/injured black cherry) occurred in the NW section of GRSM compared with the other Park sections. Regression analyses showed no relationships in ozone injury with respect to aspect, slope or elevation. Tall milkweed was evaluated twice during August for ozone injury. The incidence (% injured plants) of ozone injury was 74 and 79% for the first and second survey, respectively. The percentage of injured leaves per plant from the first to second survey was 63 to 79%, respectively. Tall milkweeds showing ozone injury were taller than the non-injured plants. The percentage of insect-damaged plants was 50% among plants without ozone injury and 60% among ozone-injured plants. Non-injured tall milkweed had fewer flowers and/or pods than the injured plants. Mean leaf area injured increased over time, and mean maximum leaf area injured increased from 8 to 11% during the same period. Regression analyses showed no differences in ozone injury regarding aspect, slope or elevation. Our findings indicate that ozone injury is widespread throughout the Park on sensitive vegetation.  相似文献   

9.
Seedling growth and nutritional status have been shown to be sensitive to ozone, but the influence of multi-season ozone exposure on mature tree growth and nutrition has not been examined. To determine if seedlings and mature trees were similarly affected by ozone exposure, growth and nutrient concentrations in northern red oak (Quercus rubra L.) 4-year-old seedlings and 32-year-old mature trees were examined after treatment with subambient, ambient and twice ambient concentrations of ozone for three growing seasons. SUM00 values summed over the three growing seasons were 147, 255 and 507 ppm-h, respectively, for the subambient, ambient and twice ambient exposures. For mature trees, no influence of ozone treatment on lower stem diameter growth, stem growth within the mid-canopy and foliar biomass was observed. Seedling height was increased by ozone, but biomass and diameter were unaffected. A reduction in the specific leaf weight of leaves in response to ozone coincident with the loss of recurrent flushing was observed in seedlings. Ozone exposure reduced foliar nitrogen concentrations and increased woody tissue nutrient concentrations in seedlings and mature trees at the end of the third growing season. These results suggest an influence of ozone on retranslocation processes in seedlings and mature trees.  相似文献   

10.
Open pollinated families of black cherry seedlings were studied to determine genotypic differences in foliar ozone injury and leaf gas exchange in 1994 and growth response following three growing seasons. An O(3)-sensitive half-sibling family (R-12) and an O(3)-tolerant half-sibling family (MO-7) planted in natural soil were studied along with generic nursery stock (NS) seedlings. Ozone exposure treatments were provided through open top chambers and consisted of 50, 75, and 97% of ambient ozone, and open plots from May 9 to August 26, 1994. Ambient ozone concentrations reached an hourly peak of 88 ppb with 7-hour averages ranging from 39 to 46 ppb. Seedlings in the 50 and 75% of ambient chambers were never exposed to greater than 80 ppb O(3). Visible foliar ozone injury (stipple) was significantly higher for R-12 seedlings than MO-7 seedlings and increased with increasing ozone exposures. For the chamber treatments averaged over all families, there was no significant difference in stomatal conductance and net photosynthetic rates, but there was a significant decrease in root biomass, and a significant decrease in root/shoot ratio between the 50 and 97% of ambient chambers. Stomatal conductance and net photosynthetic rates were significantly different between families with R-12 seedlings generally greater than MO-7 seedlings. The R-12 seedlings had a 7.5 mmol m(-2) increase in ozone uptake compared to MO-7, and at the same cumulative O(3) exposure R-12 exhibited 40.9% stippled leaf area, whereas MO-7 had 9.2% stippled leaf area. Significant differences were observed in stem volume growth and total final biomass between the open-top chambers and open plots. Although R-12 had the most severe foliar ozone injury, this family had significantly greater stem volume growth and total final biomass than MO-7 and NS seedlings. Root:shoot ratio was not significantly different between MO-7 and R-12 seedlings.  相似文献   

11.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

12.
Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.  相似文献   

13.
A review of ozone-induced effects on the forests of central Mexico   总被引:1,自引:0,他引:1  
The first report on oxidant-induced plant damage in the Valley of Mexico was presented over 30 years ago. Ozone is known to occur in the Mexico City Metropolitan Area and elsewhere as the cause of chlorotic mottling on pine needles that are 2 years old or older as observed in 1976 on Pinus hartwegii and Pinus leiophylla. Visible evidences for the negative effects of ozone on the vegetation of central Mexico include foliar injury expressed as chlorotic mottling and premature defoliation on pines, a general decline of sacred fir, visible symptoms on native forest broadleaved species (e.g. Mexican black cherry). Recent investigations have also indicated that indirect effects are occurring such as limited root colonization by symbiotic fungi on ozone-damaged P. hartwegii trees and a negative influence of the pollutant on the natural regeneration of this species. The negative ozone-induced effects on the vegetation will most likely continue to increase.  相似文献   

14.
The differences in growth, leaf senescence, visible ozone injuries and stomatal density between one coastal site (natural ozone) and two inland sites (natural and elevated ozone) in Finland were determined for saplings of Betula pendula clones grown under open-field conditions during two growing seasons. Responses in growth, leaf senescence, visible injuries, and stomatal density were determined in relation to cumulative ozone exposure accumulated over the thresholds of 30, 40 and 50 ppb (10(9)) during the exposure period. In addition, the effects of the different ozone exposures on ultrastructure of chloroplasts were studied. Increasing ozone exposure resulted in reduced shoot dry weight, stimulated (first year) or reduced (second year) height growth, accelerated autumn yellowing of leaves, increased stomatal density, visible symptoms and chloroplast injuries, and increased number and size of plastoglobuli. Newly expanded mature leaves in midsummer were more sensitive to ozone episodes than younger developing leaves in the early growing season. In most parameters, the best correlation was achieved with the exposure index AOT30. Ozone risk for birch is highest in the southern coastal area of Finland, where background ozone concentrations are higher than in inland sites.  相似文献   

15.
Forty clones of Betula pendula and 6 clones of Betula pubescens, originating from southern and central Finland, were ranked in order of ozone sensitivity according to visible injuries, growth and leaf senescense under low ozone exposure. The plants were fumigated in natural climatic conditions using an open-air exposure system during two growing seasons. Control plants were grown under ambient air, and the elevated-ozone exposures were 1.6x the ambient in 1994 and 1.7x the ambient in 1995. The differences in ozone sensitivity among clones were large. Ozone tolerance was related to thicker leaves and higher stomatal density as compared to sensitive clones. Ultrastructural ozone-induced symptoms were found in chloroplasts of sensitive clones. Increased number of visibly injured leaves on fumigated plants was correlated with reduced leaf formation, foliage area, shoot dry wt and number of stomata, and increased yellowing of leaves. The results suggest that a considerable proportion of birch trees, showing high sensitivity to ozone, are at risk if ambient ozone exposures increase.  相似文献   

16.
To determine if stomatal conductance (g(s)) of forest trees could be predicted from measures of leaf microclimate, diurnal variability in in situ g(s) was measured in black cherry (Prunus serotina), red maple (Acer rubrum), and northern red oak (Quercus rubra). Relative to overstory trees, understory saplings exhibited little diurnal variability in g(s) and ozone uptake. Depending on species and site, up to 30% of diurnal and seasonal variation in g(s )of overstory trees was explained by photosynthetically active radiation and vapor pressure deficit. Daily maximum g(s) was significantly related to soil moisture in overstory northern red oak and black cherry (R(2) ranged from 33 to 65%). Although g(s) was not fully predicted using instantaneous measures of leaf microclimate, ozone uptake of large forest trees was reduced by low soil moisture.  相似文献   

17.
Because the current critical level of ozone (O(3)) for forest trees is based only on one species, the responses of five deciduous tree species were differentiated in a climate chamber experiment. The number of symptomatic leaves per tree was significantly increased, and stomatal conductance was decreased under 50% ambient+30 nl l(-1) O(3) as compared to 'normal' senescence at 50% ambient [O(3)]. Species with a high stomatal conductance did not show earlier or more leaf injury symptoms. The additional 30 nl l(-1) O(3) induced specific pectinaceous cell wall protrusions, phenolic cell wall incrustations, tonoplast vesicles, and inhomogeneous, condensed/precipitated phenolic material in the vacuoles. Due to added O(3), cell senescence was accelerated with increased electron-density of the cytoplasm, and initial chloroplast degeneration. The slow degeneration process started in mesophyll cells, and expanded into epidermal and finally guard cells. Because of the large variance in biomass between individuals and species, the current critical level is supported by the assessment of visible leaf symptoms rather than growth reduction.  相似文献   

18.
Growth of ponderosa pines with visible symptoms of ozone injury was compared with that of asymptomatic trees in the southern Sierra Nevada, California. Time series analysis indicated that there was no significant reduction in annual radial increment of symptomatic trees during recent years compared to past growth and growth of asymptomatic trees. First order autocorrelation and climatic variables accounted for a large proportion of the variance in growth index, and winter precipitation was positively correlated with growth for all size and age classes. Although ozone concentrations are high enough to cause chlorosis and premature needle senescence in ponderosa pine, there has been no significant change in growth associated with ozone injury.  相似文献   

19.
Considerable progress has been made during the past decade in the development of mechanistic models that allow complex chemical, physical, and biological processes to be evaluated in the global change context. However, quantitative predictions of the response of individual trees, stands, and forest ecosystems to pollutants and climatic variables require extrapolation of existing data sets, derived largely from seedling studies, to increasing levels of complexity with little or no understanding of the uncertainties associated with these extrapolations. Consequently, a project designed to address concerns associated with scaling from seedling to mature tree responses was initiated. During the 1990 and 1991 growing seasons, mature northern red oak (Quercus rubra L.) trees and seedlings were exposed to subambient, ambient, and twice ambient ozone (O(3)) concentrations. The initial focus of the study was to identify possible trends and obvious differences between mature trees and seedlings, both in terms of growth and physiology and in response to O(3). Generally, mature trees exhibited a greater decrease in photosynthesis rates over the growing season than did the seedlings. Ozone treatments had no consistent effect on gas exchange rates of seedlings, but the twice ambient O(3) treatment resulted in reduced photosynthesis rates in the mature tree. Despite no effect of O(3) on seedling gas exchange rates, total seedling biomass was significantly less at the end of the 1991 growing season for those seedlings exposed to twice ambient O(3) levels. Disproportionate reductions in root biomass also resulted in reduced root to shoot ratios at elevated O(3) concentrations.  相似文献   

20.
During late summer of 1996 and 1997 we examined ozone-induced foliar injury in a plantation of 111 black cherry trees (ramets) comprising 15 clones originating from wild ortets growing in the Allegheny National Forest, Pennsylvania, and the Monongahela National Forest, West Virginia. The experimental plantation was a clonal seed orchard in Centre County, Pennsylvania, started in 1971 using ortet buds grafted onto seedling rootstocks of mixed origin. Clones differed significantly in severity of foliar injury symptoms (F=31.83, p<0.001). One clone (R-12) had significantly more foliar injury with >50% leaf area affected than other clones during both years. In contrast, clone R-14, which is from the same area in northcentral Pennsylvania as R-12, exhibited significantly less injury (LAA<6%). Although ambient O(3) concentrations were similar in both years, foliar injury was significantly greater (15.7%) in 1996 than in 1997 (9.9%). This is probably explained by lower stomatal conductance in 1997 caused by drier and hotter weather patterns in June and July of that year. Despite very different weather patterns and overall levels of injury in 1996 and 1997, mean clonal injury was significantly correlated between both years of assessment (r=0.92, p<0.001). Within tree crowns, foliage in lower and inner crown positions was significantly more injured than foliage in upper and exterior crown positions. There was no evidence of geographically based population differences in sensitivity to foliar O(3) injury. On the contrary, results demonstrate that wild genotypes of proximal geographic origin may differ greatly in sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号