首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 965 毫秒
1.
Matsunaga A  Yasuhara A 《Chemosphere》2005,59(10):1487-1496
Electrochemical reduction with electrochemically generated naphthalene radical anion in N,N-dimethylformamide was applied to the dechlorination of five representative POPs, namely HCB, lindane, DDT, PCP and aldrin. Rapid and complete dechlorination was possible for lindane and DDT to give nearly quantitative yields of benzene and 1,1-diphenylethane, respectively. HCB was reduced through complex reaction pathways to yield unknown products. Dechlorination of PCP and aldrin beyond dichlorinated compounds was difficult because of their very negative reduction potential. The reaction pathways for each dechlorination were proposed with the identification of intermediates.  相似文献   

2.
BACKGROUND, AIMS AND SCOPE: In the first part of this paper the main principles which control the dehalogenation of polychlorinated aromatic compounds on municipal waste incineration fly ash (MWI-FA) have been discussed and the model fly ash of similar dehalogenation activity has been proposed. Even if both systems show comparable dehalogenation properties, the main question concerning the postulated identical reaction mechanism in both cases is left unanswered. The other very important point is to what extent is this dechlorination mechanism thermodynamically controlled. The same problem is often discussed in the literature also for the de novo synthetic reactions. From the data it is clear that metallic copper plays a decisive role in the mechanism of the dehalogenation reaction. Although the results reported in the first part strongly support the idea that copper acts in this dechlorination as the reaction component, in contrast to its generally accepted catalytic behaviour, we believed that additional support for this conclusion can be obtained with the help of a thermodynamic interpretation of the mechanism of the reaction. RESULTS AND DISCUSSION: The pathways of hexachlorobenzene dechlorination on MWI-FA and model fly ash were studied in a closed system at 260-300 degrees C under nitrogen atmosphere. These pathways were the same for both systems, with the following prevailing sequences: hexachlorobenzene --> pentachlorobenzene --> 1,2,3,5-tetrachlorobenzene --> 1,3,5-trichlorobenzene --> 1,3-dichlorobenzene. Thermodynamic calculations were carried out by using the method of minimization total Gibbs energy of the whole system. In the calculations, the following reaction components were taken into account: all gaseous chlorinated benzenes, benzene, hydrogen chloride, a gaseous trimer Cu3Cl3, and also Cu2O and CuCl2 as solid components. The effect of the reaction temperature and the amount of copper and water vapour were considered as well. The effect of reaction temperature was determined from the data calculated for the 500 to 750 K temperature region. The effect of the initial composition was determined for the molar amounts of copper = 0.01-3 moles and water vapour = 0.2 to 3 moles per mole of chlorobenzene isomer CONCLUSIONS: The results of hexachlorobenzene dechlorination by MWI-FA and model fly ash under comparable reaction conditions allow us to conclude that both dechlorinations proceed via the same dechlorination pathways, which can be taken as an evidence of the identical dehalogenation mechanism for both systems. The relative percentual distribution of the dehalogenated products depends on the temperature, but not on the initial amount of water vapour or copper metal. On the other hand, the initial amount of copper substantially affects the conversion of the dehalogenation as well as the molar ratio of Cu3Cl3 to HCl in the equilibrium mixture. Comparison of the experimental with thermodynamic results supports the idea that dehalogenation reactions are thermodynamically controlled. RECOMMENDATIONS AND OUTLOOK: Thermodynamic analysis of the dehalogenation reactions may prove useful for a wide range of pollutants. The calculations concerning polychlorinated biphenyls and phenols are under study.  相似文献   

3.
Microbial transformation and degradation of polychlorinated biphenyls   总被引:7,自引:0,他引:7  
This paper reviews the potential of microorganisms to transform polychlorinated biphenyls (PCBs). In anaerobic environments, higher chlorinated biphenyls can undergo reductive dehalogenation. Meta- and para-chlorines in PCB congeners are more susceptible to dechlorination than ortho-chlorines. Anaerobes catalyzing PCB dechlorination have not been isolated in pure culture but there is strong evidence from enrichment cultures that some Dehalococcoides spp. and other microorganisms within the Chloroflexi phylum can grow by linking the oxidation of H(2) to the reductive dechlorination of PCBs. Lower chlorinated biphenyls can be co-metabolized aerobically. Some aerobes can also grow by utilizing PCB congeners containing only one or two chlorines as sole carbon/energy source. An example is the growth of Burkholderia cepacia by transformation of 4-chlorobiphenyl to chlorobenzoates. The latter compounds are susceptible to aerobic mineralization. Higher chlorinated biphenyls therefore are potentially fully biodegradable in a sequence of reductive dechlorination followed by aerobic mineralization of the lower chlorinated products.  相似文献   

4.
Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD.  相似文献   

5.
The complete dechlorination of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) by a magnesium/palladium bimetallic system has been accomplished. The reaction takes place under ambient temperature and pressure and mild reaction conditions requiring only 0.25 g of magnesium and 0.3% palladium (wt/wt) to drive the dechlorination of 100 microg DDT (50 ppm in 2 ml). The process is both rapid and complete requiring less than 10 min to attain total dechlorination within the detection limit (approximately 10 pg for DDT) of electron capture detection gas chromatography (GC-ECD). The major product formed, as deduced from mass spectrometry (GC-MS) is the hydrocarbon skeleton, 1,1-diphenylethane. This technology may allow for the development of an economic and environmentally benign method of DDT remediation.  相似文献   

6.
Nine polychlorinated biphenyl (PCB) congeners (2-chlorobiphenyl, 3-chlorobiphenyl, 4-chlorobiphenyl, 2,3,4-trichlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, 2,3',4,4',5-pentachlorobiphenyl, 3,3',4,4',5-pentachlorobiphenyl, 2,2',4,4',5,5'-hexachlorobiphenyl, and decachlorobiphenyl) were dechlorinated by the sodium dispersion method (SD) at low temperature (60 degrees C). The dechlorination of 4-chlorobiphenyl was the fastest among the three monochlorobiphenyls. As for the other six congeners, we investigated the major dechlorination pathways. Although reaction selectivity was not very sensitive to the position of the chlorine substituent, the chlorines at the para position were slightly easier to dechlorinate than those at the ortho or meta positions. The decomposition rate increased with the total numbers of chlorine substituents. A chlorine situated between two other chlorines showed a high reactivity. When the numbers of chlorines on each of the phenyl rings were different, the reactions occurred on the more substituted ring. In the degradation of 4-chlorobiphenyl at elevated temperature (160 degrees C), we investigated the structures of the polymerized products and whether all the organic chlorinated compounds degraded finally or not. As for the dimers, p-quarterphenyl (QP) and m,p-QP were detected but not o-QP, m-QP, o,p-QP, o,m-QP, or the mono- to tetra-chlorinated QPs. Compounds with a molecular weight of 534.4183 or 758.6713 were detected. They were considered to have C40H54 or C56H86 as their molecular formula. The compounds were most probably the polymerized products resulting from coupling of hexadecane or two hexadecanes and two phenylcyclohexadienes. It was thought the dechlorination and the polymerization were the main reactions. All of many detected compounds were hydrocarbons without chlorines, and no peaks originating from organic chlorinated compounds were observed by mass spectroscopic (MS) methods.  相似文献   

7.
Estuarine sediments from a USEPA Superfund site in coastal Georgia were extensively contaminated with Aroclor 1268, a mixture of highly chlorinated polychlorinated biphenyls used by a former chlor-alkali plant. Batch slurries of contaminated sediment were incubated for 1 yr with amendments of 2,6-dibromobiphenyl (26-BB) and 2,3,4,5,6-pentachlorobiphenyl (23456-CB) under anaerobic, sulfate-reducing conditions and different pH (5.5-7.5). Organic extracts of slurry sub-samples in a time series were analyzed by congener-specific GC-MS. Dechlorination of 23456-CB was pH dependent and occurred via two routes with the sequential loss of (1) meta and para chlorines and (2) para, ortho, and meta chlorines. Quantitative dehalogenation of 26-BB was observed at all pH. Supplementation of nonachlorobiphenyls (as primers) did not induce dechlorination of native Aroclor 1268 nor of the primers themselves. While contaminated estuarine sediments possess microbial consortia with diverse dehalogenating activities, lack of dechlorination of Aroclor 1268 and spiked nonachlorobiphenyl congeners suggests a bioavailability limitation or enzyme-substrate incompatibilities.  相似文献   

8.
We investigated the effectiveness of sodium hydroxide/ethylene glycol (NaOH/EG) for dehalogenation of automobile shredder residue (ASR) using a ball mill. Efficient dehalogenation was achieved at atmospheric pressure by combining the use of EG (196 degrees C b.p.) as a replacement solvent for NaOH with ball milling, which improved contact between ASR and OH(-) in solution. Moderate NaOH concentrations and increased ball mill rotation speeds produced high dechlorination that was not significantly affected by the weight ratio of ASR to EG. NaOH/EG dechlorination increased with temperature with an apparent activation energy of 50 kJ mol(-1) confirming that the reaction proceeded under chemical reaction control. The modified shrinking-core model was appropriate to explain the dechlorination process. Low chloro levels in our NaOH/EG-treated ASR suggested that this material could be used for feedstock recycling and the wet process may be applicable for dehalogenation of other important waste streams.  相似文献   

9.
BACKGROUND, AIMS AND SCOPE: It is well known that the fly ash from filters of municipal waste incinerators (MWI-FA) shows dehalogenation properties after heating it to 240-450 degrees C. However, this property is not general, and fly ash samples do not possess dehalogenation ability at all in many cases. Fly ash has a very variable composition, and the state of the fly ash matter therefore plays the decisive role. In the present paper, the function of important components responsible for the dehalogenation activity of MWI-FA is analysed and compared with the model fly ash. METHODS: With the aim of accounting for the dehalogenation activity of MWI-FA, the following studies of hexachlorobenzene (HCB) dechlorination were performed: The role of copper in dehalogenation experiments was evaluated for five types of metallic copper. The gasification of carbon in MWI-FA was studied in the 250-350 degrees C temperature range. Five different kinds of carbon were used, combined with conventional Cu(o) and activated nanosize copper powder. The dechlorination experiments were also carried out with Cu(II) compounds such as CuO, Cu(OH)2, CuCl2 and CuSO4. The results were discussed from the standpoint of thermodynamics of potential reactions. Based on these results, the model of fly ash was proposed, containing silica gel, metallic copper and carbon. The dechlorination ability of MWI-FA and the model fly ash are compared under oxygen-deficient atmosphere. CONCLUSIONS: The results show that, under given experimental conditions, copper acts in the dechlorination as a stoichiometric agent rather than as a catalyst. The increased surface activity of copper enhances its dechlorination activity. It was found further that the presence of copper leads to a decrease in the temperature of carbon gasification. The cyclic valence change from Cu(o) to Cu+ or Cu2+ is a prerequisite for the dehalogenation to take place. RECOMMENDATION AND OUTLOOK: Thermodynamic analysis of the dechlorination effect, as well as the comparison of dechlorination pathways on MWI-FA and model fly ash, can provide a deeper understanding of the studied reaction.  相似文献   

10.
As part of a program aimed at developing a field process for cleanup of PCB contaminated soils using photochemistry in basic 2-propanol, additional details of the dechlorination pathway are presented. The mechanism involves a chain reaction with both homolytic photochemical C-Cl bond fission and electron transfer steps producing PCB anion radicals. Kinetics of dechlorination of various congeners show patterns of relative rates associated with the basic 2-propanol medium that are not found in other media because both electron transfer and photochemical homolysis steps determine overall rates of dechlorination and govern the pathways and relative concentrations of intermediates. The electron transfer steps display opposite structure-reactivity correlations to the photo-homolysis, C-Cl bond fission steps. Oxygen quenching is shown to differentially affect both types of steps. In contrast to the suggestion that inter system crossing can be highly efficient with reaction originating from a PCB triplet, oxygen quenching data suggest that a significant minimum of the quantum yield is non-quenchable, presumably because of a reaction path from the PCB singlet. This may help to explain why exclusion of air is not entirely necessary in practice.  相似文献   

11.
INTENTION, GOAL, SCOPE, BACKGROUND: Identifying different sources and following reaction pathways of chlorinated organic contaminants in the environment can be challenging, especially when only their concentrations are available. Compound-specific stable chlorine measurements of some contaminants have recently been shown to provide additional information and an increased understanding of their biogeochemistry. These studies, however, have been generally limited to volatile molecules. OBJECTIVE: Here, the stable chlorine isotope ratios of the semi-volatile pesticide, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) were investigated. Specifically, the intramolecular stable chlorine isotopic compositions of DDT and the kinetic isotope effect (KIE) for the abiotic dehydrochlorination of DDT to 2,2-bis(p-chlorophenyl)-1,1-dichloroethene (DDE) were determined. METHODS: Selective chemical oxidation of DDT to dichlorobenzophenone (DCBP) and analysis of each compound was used to calculate the stable chlorine isotope ratios of the alkyl and aromatic chlorines in DDT. To determine the KIE for dehydrochlorination, DDT was reacted in a basic solution to yield DDE at 52 degrees C, 60 degrees C, and 72 degrees C for 3, 5, and 5 days, respectively. RESULTS AND DISCUSSION: Significant intramolecular stable chlorine isotopic differences were observed in one sample of DDT where the alkyl and aromatic delta 37Cl values were -5.76 +/- 0.45 and -2.21 +/- 0.24%@1000, respectively. Dehydrochlorination of DDT to DDE in basic solutions at 52, 60, and 70 degrees C resulted in a substantial intramolecular KIE where the alkyl chlorines of DDE shifted by approximately 3%@1000 relative to the alkyl chlorines in DDT. However, no temperature dependence was observed. The KIE, calculated by an iterative program, was 1.009. CONCLUSIONS: Intramolecular differences in the stable chlorine isotope ratios were observed in DDT and this is the first such finding. Dehydrochlorination of DDT yields a measurable and distinct intramolecular stable chlorine KIE. RECOMMENDATION AND OUTLOOK: The results of this study demonstrate the existence of significant intramolecular differences in chlorinated organic compounds. Many other chlorinated semi-volatile and volatile organic contaminants are synthesized from multiple sources of chlorine, and we recommend that similar studies be performed on many such molecules in order to attain a clear understanding of their intramolecular chlorine isotopic differences. The existence of a measurable KIE for the dehydrochlorination of DDT to DDE shows the potential strength of using isotopic measurements to investigate the biogeochemistry of these important compounds. For example, the isotopically depleted aqueous chloride produced by dehydrochlorination of DDT to DDE may be a useful tracer of these reactions in freshwater environments.  相似文献   

12.
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from approximately 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.  相似文献   

13.
Hexachlorobenzene (HCB) in the milligram range was co-heated with calcium oxide (CaO) powder in sealed glass ampoules at 340–400 °C. The heated samples were characterized and analyzed by Raman spectroscopy, elemental analysis, gas chromatography/mass spectrometry, ion chromatography, and thermal/optical carbon analysis. The degradation products of HCB were studied at different temperatures and heated times. The amorphous carbon was firstly quantitatively evaluated and was thought to be important fate of the C element of HCB. The yield of amorphous carbon in products increased with heating time, for samples treated for 8 h at 340, 380 °C and 400 °C, the value were 17.5%, 34.8% and 50.2%, respectively. After identification of the dechlorination products, the HCB degradation on CaO at 340–400 °C was supposed to through dechlorination/polymerization pathway, which is induced by electron transfer, generate chloride ions and form high-molecular weight intermediates with significant levels of both hydrogen and chlorine, and finally form amorphous carbon. Higher temperature was beneficial for the dechlorination/polymerization efficiency. The results are helpful for clarifying the reaction mechanism for thermal degradation of chlorinated aromatics in alkaline matrices.  相似文献   

14.
Anaerobic transformations and bioremediation of chlorinated solvents   总被引:8,自引:0,他引:8  
Chlorinated aliphatic compounds, notably the chlorinated solvents, are common contaminants in soil and groundwater at hazardous waste sites. While these compounds are often recalcitrant, under favorable conditions they can be transformed and degraded through microbially mediated processes. There is great interest in understanding the transformations that are observed at contaminated sites and in manipulating these systems to achieve remediation. An important class of transformations occurs in anaerobic environments. Many of the transformations are reductive, and many yield useful energy to specific anaerobic bacteria. They include reductive dechlorination, dehydrochlorination and dichloroelemination. Of these, reductive dechlorination is often a growth-supporting reaction, while the others may be abiological or catalyzed by biological molecules. The reactions may result in chlorinated products, but there are often reaction sequences leading to completely dechlorinated products. The behavior of carbon tetrachloride (CT), 1,1,2,2-tetrachloroethane (TeCA) and the chloroethenes, perchloroethylene (PCE) and trichloroethylene (TCE), illustrate the range of anaerobic transformations that are possible, as well as the limited transformation that often is seen in the environment. CT undergoes reductive and substitutive reactions that are catalyzed by biological molecules but do not support bacterial growth. The anaerobic degradation of TeCA, which is a major contaminant at a site near Tacoma, WA, USA, provides examples of each type of transformation, and the products formed are consistent with the chlorinated compounds that are found in groundwater extraction wells. A laboratory study, using anaerobic sludge that had been fed chlorinated compounds, a cell-free extract from the sludge, and killed controls, showed that TeCA was transformed to four products and that these were further transformed, suggesting that it might be possible to degrade TeCA to innocuous products. Reductive dechlorination of PCE and TCE has been studied in many laboratories. Studies with mixed anaerobic consortia and with several dehalogenating bacteria, including strain 195 (. Isolation of a bacterium that reductively dechlorinates tetrachloroethane to ethane. Science 276, 1568-1571) that transforms PCE to ethene, have demonstrated that reductive dechlorination supports growth of the novel bacteria that carry out the reactions. Hydrogen has been shown to be an electron donor for the bacterial dehalogenation reactions, and kinetic and thermodynamic considerations indicate that dehalogenators can compete in some, but not all, anaerobic environments, pointing to applications of in situ bioremediation and to its limitations. Selected field studies of anaerobic transformations help delineate the applications of this type of bioremediation.  相似文献   

15.
Al-Abed SR  Fang Y 《Chemosphere》2006,64(3):462-469
Electrolytic dechlorination using a granular-graphite packed cathode is an alternative method for the remediation of chlorinated organic compounds. Its effectiveness under various conditions needs experimental investigation. Dechlorination of trichloroethylene (TCE) was conducted under various conditions in an electrolytic reactor with a platinum-gauze anode and a granular-graphite packed cathode. The higher the applied current, the more TCE was eliminated and more hydrogen and oxygen gasses were generated. Current efficiency decreased with a decrease in TCE concentration during each dechlorination experiment. But, the current efficiency concentration coefficient (CECC), which was defined as current efficiency divided by concentration, was a better indicator of current efficiency. The CECC was not significantly affected by current, but it varied with pH value. The pH effects were results of the involvement of electrolytes in the proton reduction and the electron transfer at the cathode. A lower pH value favored TCE dechlorination in potassium chloride, which is an electrolyte that was not involved in cathode reactions with protons and electrons. In ammonium acetate and potassium nitrate, which involve proton reduction and/or electron transfer, the pH value affected TCE dechlorination through proton limitation and electron competition.  相似文献   

16.
Photoassisted bleaching of dyes utilizing TiO2 and visible light   总被引:7,自引:0,他引:7  
Epling GA  Lin C 《Chemosphere》2002,46(4):561-570
Titanium dioxide was shown to be generally effective as a catalyst for photobleaching many structural classes of organic dyes in aqueous solution, using visible light. However, results from study of 15 dyes indicate that photobleaching rates differ significantly from families of dyes with different functionalities, and are dependent on the light source and crystalline form of TiO2 used. Sorption characteristic on the TiO2 surface and the aqueous solubility of the dyes also play an important role in the photobleaching rate. Kinetic analysis indicates that the dye photobleaching rates can usually be approximated as pseudo-first-order kinetics. In addition to the generally proposed photocatalytic oxidation mechanism for TiO2 reactions, we observed evidence for two kinds of electron transfer mechanisms that are "photosensitized reduction" and "photosensitized oxidation". Natural sunlight was effectively used to photobleach some of the dyes.  相似文献   

17.
Gao X  Wang W  Liu X 《Chemosphere》2008,71(6):1093-1099
The dechlorination of HCB was carried out under low-temperature and oxygen deficient conditions on different solid supports such as SiO(2), CaO, CaSiO(3), cement and treated fly ash (tFA). All the tested supports except SiO(2) showed a HCB dechlorination potential. The dechlorination efficiencies (D(1)) of HCB by CaO, CaSiO(3), tFA and cement reached 64.62%, 76.15%, 79.97% and 32.21% at 350 degrees C for 4h, respectively. It was thought electrons in the vacancies originated from the unsaturated metallic ions and O(2-) on the crystal surfaces made the D(1) different between SiO(2), CaO and CaSiO(3). Comparing the D(1) by tFA and cement, the high dechlorination potential of tFA was due to the more free electrons from the crystal defects and the transition metals, and the more active points for the gas-solid phase reaction, which both had positive effects on dechlorination reaction. The effect of Cu addition (0.2-5.0%) on HCB dechlorination might result from the Ullmann coupling which was not notable in enhancing the dechlorination reaction. From the study, we can draw the conclusion that the dechlorination potential mainly depends on the support characteristic rather than the transition metal content. Based on this study and previous references, the dechlorination/polymerization induced by the electron transfer mode was thought to be the dominant pathway while the hydrogen transfer mode was minor. The electron was originated from the crystal defects or induced by transition metals, and the dissociation of a chloride ion happened forming a radical, and then the polymerization of radicals led to the formation of high-molecular-weight compounds which seemed to cause the material imbalance.  相似文献   

18.
The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments.  相似文献   

19.
1,2,3-Trichlorobenzene (1,2,3-TCB) was used as a model sample of persistent organic pollutants (POPs) which was dechlorinated by a closed electrochemical reduction system under an inert gas atmosphere. The effect of the electrode material was examined in the reaction. Dechlorination yields in different type of cathode electrodes using sintered RuO2 (major)/Pt/PdO, sintered Pt(major)/IrO2/RuO2, sintered RuO2, sintered PdO, sintered Pt, sintered PdO/Pt, sintered Pd/Pt and plain Pd plate were 91%, 81%, 59%, 96%, 53%, 97%, 82% and 70% respectively, at reaction times of 60 or 120 min. The reaction was exothermic after initially starting at room temperature. This electrochemical reduction system was friendly technology for environment using cation exchange membrane, supplying sodium ions from sodium hydroxide solution as anolyte. Trace amounts of dichlorobenzene, as products of stepwise dechlorination, were observed with different pathways, depending on the electrode material. Electrodes with Ru and Pd were selective mainly for meta-position dechlorination, while those with Pt groups selective mainly for ortho-position (o-position) dechlorination. A PdO sintered electrode had an especially high selectivity for meta-position (m-position) dechlorination. The results suggest that dechlorination is an electrocatalytic reduction in this cation supply system.  相似文献   

20.
Mediated electrochemical reduction was applied to the dechlorination of polychlorinated biphenyls (PCBs) in tetra-n-butylammonium perchlorate/dimethylformamide solution. Rapid and complete dechlorination was possible with biphenyl or naphthalene as the mediator, whereas the reaction was much slower with anthracene or 9,10-diphenylanthracene. The reaction rate was so high with naphthalene or biphenyl radical anion that differences in reactivity could not be observed between congeners. Side reactions, other than biphenyl formation, could occur depending upon the mediators and the substrates, but contributed less than 10% of the total products in the case of naphthalene-mediated dechlorination. Almost all chloride ion formed in the dechlorination remained in the cathode solution. The order of the reaction was determined to be 0.5 for the substrate and 1 for the mediator (naphthalene) in the dechlorination of 2-chlorobiphenyl; identical to results for the mediated dechlorination of 1-chloronaphthalene. The reaction rate in practical PCB dechlorination could be estimated with the use of the initial concentration of the mediator and chlorine content of the solution provided that the problem of the deactivation of the electrode surface could be solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号