首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
2.
AERCOARE is a meteorological data preprocessor for the American Meteorological Society and U.S Environmental Protection Agency (EPA) Regulatory Model (AERMOD). AERCOARE includes algorithms developed during the Coupled-Ocean Atmosphere Response Experiment (COARE) to predict surface energy fluxes and stability from routine overwater measurements. The COARE algorithm is described and the implementation in AERCOARE is presented. Model performance for the combined AERCOARE-AERMOD modeling approach was evaluated against tracer measurements from four overwater field studies. Relatively better model performance was found when lateral turbulence measurements were available and when several key input variables to AERMOD were constrained. Namely, requiring the mixed layer height to be greater than 25 m and not allowing the Monin Obukhov length to be less than 5 m improved model performance in low wind speed stable conditions. Several options for low wind speed dispersion in AERMOD also affected the model performance results. Model performance for the combined AERCOARE-AERMOD modeling approach was found to be comparable to the current EPA regulatory Offshore Coastal Model (OCD) for the same tracer studies. AERCOARE-AERMOD predictions were also compared to simulations using the California Puff-Advection Model (CALPUFF) that also includes the COARE algorithm. Many model performance measures were found to be similar, but CALPUFF had significantly less scatter and better performance for one of the four field studies. For many offshore regulatory applications, the combined AERCOARE-AERMOD modeling approach was found to be a viable alternative to OCD the currently recommended model.

Implications: A new meteorological preprocessor called AERCOARE was developed for offshore source dispersion modeling using the U.S. Environmental Protection Agency (EPA) regulatory model AERMOD. The combined AERCOARE-AERMOD modeling approach allows stakeholders to use the same dispersion model for both offshore and onshore applications. This approach could replace current regulatory practices involving two completely different modeling systems. As improvements and features are added to the dispersion model component, AERMOD, such techniques can now also be applied to offshore air quality permitting.  相似文献   


3.
ABSTRACT

A new Gaussian dispersion model, the Plume Rise Model Enhancements (PRIME), has been developed for plume rise and building downwash. PRIME considers the position of the stack relative to the building, streamline deflection near the building, and vertical wind speed shear and velocity deficit effects on plume rise. Within the wake created by a sharp-edged, rectangular building, PRIME explicitly calculates fields of turbulence intensity, wind speed, and streamline slope, which gradually decay to ambient values downwind of the building. The plume trajectory within these modified fields is estimated using a numerical plume rise model. A probability density function and an eddy diffusivity scheme are used for dispersion in the wake. A cavity module calculates the fraction of plume mass captured by and recirculated within the near wake. The captured plume is re-emitted to the far wake as a volume source and added to the uncaptured primary plume contribution to obtain the far wake concentrations.

The modeling procedures currently recommended by the U.S. Environmental Protection Agency (EPA), using SCREEN and the Industrial Source Complex model (ISC), do not include these features. PRIME also avoids the discontinuities resulting from the different downwash modules within the current models and the reported overpredictions during light-wind speed, stable conditions. PRIME is intended for use in regulatory models. It was evaluated using data from a power plant measurement program, a tracer field study for a combustion turbine, and several wind-tunnel studies. PRIME performed as well as or better than ISC/SCREEN for nearly all of the comparisons.  相似文献   

4.
A new Gaussian dispersion model, the Plume Rise Model Enhancements (PRIME), has been developed for plume rise and building downwash. PRIME considers the position of the stack relative to the building, streamline deflection near the building, and vertical wind speed shear and velocity deficit effects on plume rise. Within the wake created by a sharp-edged, rectangular building, PRIME explicitly calculates fields of turbulence intensity, wind speed, and streamline slope, which gradually decay to ambient values downwind of the building. The plume trajectory within these modified fields is estimated using a numerical plume rise model. A probability density function and an eddy diffusivity scheme are used for dispersion in the wake. A cavity module calculates the fraction of plume mass captured by and recirculated within the near wake. The captured plume is re-emitted to the far wake as a volume source and added to the uncaptured primary plume contribution to obtain the far wake concentrations. The modeling procedures currently recommended by the U.S. Environmental Protection Agency (EPA), using SCREEN and the Industrial Source Complex model (ISC), do not include these features. PRIME also avoids the discontinuities resulting from the different downwash modules within the current models and the reported overpredictions during light-wind speed, stable conditions. PRIME is intended for use in regulatory models. It was evaluated using data from a power plant measurement program, a tracer field study for a combustion turbine, and several wind-tunnel studies. PRIME performed as well as or better than ISC/SCREEN for nearly all of the comparisons.  相似文献   

5.
6.
The U.S. Environmental Protection Agency (EPA) short-distance dispersion model, AERMOD, has been shown to overpredict by a factor of as much as 10 when compared with observed concentrations from continuous releases at the Oak Ridge, TN (OR), and Idaho Falls, ID (IF), field experiments during stable periods when wind speeds often dropped below 1 m/sec. Some of this overprediction tendency can be reduced by revising AERMOD's meteorological preprocessor's parameterizations of the friction velocity, u * , during low-wind stable conditions, thus increasing the calculated σ v and σ w and hence the lateral and vertical dispersion rates. Observations show that as the mean wind speed approaches zero at night, there is always significant σ v and σ w over time periods of 15 to 60 min, while standard Monin–Obukhov Similarity Theory (MOST) predicts that σ v and σ w will approach zero. This paper focuses on the u * estimation methods and the minimum turbulence (σ v and σ w ) assumptions in AERMOD (beta option 4) and two widely used U.S. operational dispersion models, AERMOD (v12345) and SCICHEM. The U.S. EPA has provided results of its tests with the OR and IF data, with its base AERMOD version and its December 2012 modified versions, which assume adjustments to the low-wind u * and increases in the minimum σ v parameterization. SCICHEM has relatively small mean bias for both data sets. The revised AERMOD shows much less mean bias, agreeing more with SCICHEM.

Implications:

Suggestions are made for improvements to dispersion models such as AERMOD to correct overpredictions during light-wind stable conditions. Methods for estimating u*, L, and the minimum turbulence parameters (σv and σw) are reviewed and compared. SCICHEM and the current operational version and an optional beta version (December 2012) of AERMOD are evaluated with tracer data from low-wind stable field experiments in Idaho Falls and Oak Ridge. It is seen that the operational version of AERMOD overpredicts by a factor of 2 to 10, while the optional beta version of AERMOD and SCICHEM have much less bias.  相似文献   


7.
An evaluation of the steady-state dispersion model AERMOD was conducted to determine its accuracy at predicting hourly ground-level concentrations of sulfur dioxide (SO2) by comparing model-predicted concentrations to a full year of monitored SO2 data. The two study sites are comprised of three coal-fired electrical generating units (EGUs) located in southwest Indiana. The sites are characterized by tall, buoyant stacks, flat terrain, multiple SO2 monitors, and relatively isolated locations. AERMOD v12060 and AERMOD v12345 with BETA options were evaluated at each study site. For the six monitor–receptor pairs evaluated, AERMOD showed generally good agreement with monitor values for the hourly 99th percentile SO2 design value, with design value ratios that ranged from 0.92 to 1.99. AERMOD was within acceptable performance limits for the Robust Highest Concentration (RHC) statistic (RHC ratios ranged from 0.54 to 1.71) at all six monitors. Analysis of the top 5% of hourly concentrations at the six monitor–receptor sites, paired in time and space, indicated poor model performance in the upper concentration range. The amount of hourly model predicted data that was within a factor of 2 of observations at these higher concentrations ranged from 14 to 43% over the six sites. Analysis of subsets of data showed consistent overprediction during low wind speed and unstable meteorological conditions, and underprediction during stable, low wind conditions. Hourly paired comparisons represent a stringent measure of model performance; however, given the potential for application of hourly model predictions to the SO2 NAAQS design value, this may be appropriate. At these two sites, AERMOD v12345 BETA options do not improve model performance.

Implications:

A regulatory evaluation of AERMOD utilizing quantile-quantile (Q–Q) plots, the RHC statistic, and 99th percentile design value concentrations indicates that model performance is acceptable according to widely accepted regulatory performance limits. However, a scientific evaluation examining hourly paired monitor and model values at concentrations of interest indicates overprediction and underprediction bias that is outside of acceptable model performance measures. Overprediction of 1-hr SO2 concentrations by AERMOD presents major ramifications for state and local permitting authorities when establishing emission limits.  相似文献   


8.
9.
In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout.

Implications: This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization the building layout based on particle transport characteristics during the renewal of industrial cities. For city planners, the results and conclusions are useful for improving the local air quality. The study method also can be used to calculate the explosion risk of industrial dust for people who live in industrial cities.  相似文献   


10.
Vale Canada Limited owns and operates a large nickel smelting facility located in Sudbury, Ontario. This is a complex facility with many sources of SO2 emissions, including a mix of source types ranging from passive building roof vents to North America's tallest stack. In addition, as this facility performs batch operations, there is significant variability in the emission rates depending on the operations that are occurring. Although SO2 emission rates for many of the sources have been measured by source testing, the reliability of these emission rates has not been tested from a dispersion modeling perspective. This facility is a significant source of SO2 in the local region, making it critical that when modeling the emissions from this facility for regulatory or other purposes, that the resulting concentrations are representative of what would actually be measured or otherwise observed. To assess the accuracy of the modeling, a detailed analysis of modeled and monitored data for SO2 at the facility was performed. A mobile SO2 monitor sampled at five locations downwind of different source groups for different wind directions resulting in a total of 168 hr of valid data that could be used for the modeled to monitored results comparison. The facility was modeled in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model) using site-specific meteorological data such that the modeled periods coincided with the same times as the monitored events. In addition, great effort was invested into estimating the actual SO2 emission rates that would likely be occurring during each of the monitoring events. SO2 concentrations were modeled for receptors around each monitoring location so that the modeled data could be directly compared with the monitored data. The modeled and monitored concentrations were compared and showed that there were no systematic biases in the modeled concentrations.

Implications:

This paper is a case study of a Combined Analysis of Modelled and Monitored Data (CAMM), which is an approach promulgated within air quality regulations in the Province of Ontario, Canada. Although combining dispersion models and monitoring data to estimate or refine estimates of source emission rates is not a new technique, this study shows how, with a high degree of rigor in the design of the monitoring and filtering of the data, it can be applied to a large industrial facility, with a variety of emission sources. The comparison of modeled and monitored SO2 concentrations in this case study also provides an illustration of the AERMOD model performance for a large industrial complex with many sources, at short time scales in comparison with monitored data. Overall, this analysis demonstrated that the AERMOD model performed well.  相似文献   


11.
Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland (“Reykjavik haze”), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events.

Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured.

Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

Implications: Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and provides a unique perspective of the dust aerosol production from natural sources in the sub-Arctic Iceland. The amounts are staggering, and with this paper, it is clear that Icelandic dust sources need to be considered among major global dust sources. This paper presents the dust events directly affecting the air quality in the Arctic region.  相似文献   


12.
13.
Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models—CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)—are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations.

Implications: The paper provides emission factors (EFs) that are a function of traffic volume and mode of operation (free flow and congestion) for LDVs under real-world conditions. The good agreement between monitoring and modeling results indicates that high-resolution, simultaneous measurements of air quality and meteorological and traffic conditions can be used to determine real-world, fleet-wide vehicle EFs as a function of vehicle mode of operation under actual driving conditions.  相似文献   


14.
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.

In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.

Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.

Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.

Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.

Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.

A list of acronyms will be found at the end of the article.  相似文献   


15.
This paper explores the application of corona plasma technology as a tool in treatment of volatile organic compounds (VOCs). The review introduces the principle of corona discharge and describes the characteristics of plasma, especially of various corona plasma reactors. By summarizing the main features of such reactors, this paper provides a brief background to different power sources and reactor configurations and their application to VOC treatment design. Considering chlorinated compounds, benzene series and sulfur compounds, this paper reveals the probable mechanism of corona plasma in VOC degradation. Additionally, the effects of numerous technical parameters – such as reactor structure, shape and materials of electrodes, and humidity – are analyzed comprehensively. Product distribution, energy efficiency and economic benefits are invoked as factors to evaluate the performance of VOC degradation. Finally, the practical application of corona plasma and its advantages are briefly introduced. The review aims to illustrate the enormous potential of corona plasma technology in the treatment of VOCs, and identifies future directions.

Implications: This paper comprehensively describes the principle, characteristics, research progress and engineering application examples of the degradation of volatile organics by corona discharge plasma, to provide a theoretical basis for the industrial application of this process.  相似文献   


16.
A new method has been developed for a direct and remote measurement of industrial flare combustion efficiency (CE). The method is based on a unique hyper-spectral or multi-spectral Infrared (IR) imager which provides a high frame rate, high spectral selectivity and high spatial resolution. The method can be deployed for short-term flare studies or for permanent installation providing real-time continuous flare CE monitoring.

In addition to the measurement of CE, the method also provides a measurement for level of smoke in the flare flame regardless of day or night. The measurements of both CE and smoke level provide the flare operator with a real-time tool to achieve “incipient smoke point” and optimize flare performance.

The feasibility of this method was first demonstrated in a bench scale test. The method was recently tested on full scale flares along with extractive sampling methods to validate the method. The full scale test included three types of flares – steam assisted, air assisted, and pressure assisted. Thirty-nine test runs were performed covering a CE range of approximately 60-100%. The results from the new method showed a strong agreement with the extractive methods (r2=0.9856 and average difference in CE measurement=0.5%).

Implications: Because industrial flares are operated in the open atmosphere, direct measurement of flare combustion efficiency (CE) has been a long-standing technological challenge. Currently flare operators do not have feedback in terms of flare CE and smoke level, and it is extremely difficult for them to optimize flare performance and reduce emissions. The new method reported in this paper could provide flare operators with real-time data for CE and smoke level so that flare operations can be optimized. In light of EPA’s focus on flare emissions and its new rules to reduce emissions from flares, this policy-relevant development in flare CE monitoring is brought to the attention of both the regulating and regulated communities.  相似文献   


17.
An explicit NOx chemistry method has been implemented in AERMOD version 15181, ADMSM. The scheme has been evaluated by comparison with the methodologies currently recommended by the U.S. EPA for Tier 3 NO2 calculations, that is, OLM and PVMRM2. Four data sets have been used for NO2 chemistry method evaluation. Overall, ADMSM-modeled NO2 concentrations show the most consistency with the AERMOD calculations of NOx and the highest Index of Agreement; they are also on average lower than those of both OLM and PVMRM2. OLM shows little consistency with modeled NOx concentrations and markedly overpredicts NO2. PVMRM2 shows performance closer to that of ADMSM than OLM; however, its behavior is inconsistent with modeled NOx in some cases and it has less good statistics for NO2. The trend in model performance can be explained by examining the features particular to each chemistry method: OLM can be considered as a screening model as it calculates the upper bound of conversion from NO to NO2 possible with the background O3 concentration; PVMRM2 includes a much-improved estimate of in-plume O3 but is otherwise similar to OLM, assuming instantaneous reaction of NO with O3; and ADMSM allows for the rate of this reaction and also the photolysis of NO2. Evaluation with additional data sets is needed to further clarify the relative performance of ADMSM and PVMRM2.

Implications: Extensive evaluation of the current AERMOD Tier 3 chemistry methods OLM and PVMRM2, alongside a new scheme that explicitly calculates the oxidation of NO by O3 and the reverse photolytic reaction, shows that OLM consistently overpredicts NO2 concentrations. PVMRM2 performs well in general, but there are some cases where this method overpredicts NO2. The new explicit NOx chemistry scheme, ADMSM, predicts NO2 concentrations that are more consistent with both the modeled NOx concentrations and the observations.  相似文献   


18.
Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL.

Implications: Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.  相似文献   


19.
Abstract

This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号