首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
珠江三角洲地区地下水酸化严重。选取东莞市为典型酸化研究区,研究典型土壤在酸沉降条件下的酸化机制,并探讨其对地下水酸化的影响。利用酸缓冲曲线法和土壤固相组分顺序提取的方法对未明显酸化的水稻土、已酸化的水稻土以及红壤的酸缓冲容量和缓冲能力进行测定。结果显示,持续酸沉降条件下,水稻土和红壤分别在90.8 a和68.3 a后达到酸害水平并加剧地下水酸化。土壤对酸的缓冲能力为:未明显酸化的水稻土红壤已酸化的水稻土。土壤的酸缓冲能力主要受活性氧化物含量影响,游离氧化物对其酸缓冲能力影响较小,土壤有机质在酸沉降初期起一定的缓冲作用。  相似文献   

2.
选择5种典型土壤进行了镉污染的电动修复研究。结果表明,经12 d电动修复后,黑土、潮土、红壤、水稻土和黄棕壤中镉的去除率依次为16.7%、21.0%、47.1%、10.7%和12.6%。红壤靠阳极附近Cd含量由初期435 mg·kg-1降至32.4 mg·kg-1,迁移率高达92.5%。黑土、红壤和潮土都维持了较高的电流强度和电渗流量,但由于红壤对碱的缓冲能力较强,修复效果最好。水稻土中电渗流量高,但由于电流低,镉的去除率不高,说明电动修复中电迁移作用强于电渗析。修复后,土壤中可交换态镉、碳酸盐结合态镉、铁锰氧化物结合态镉总量减少,残渣态镉总量增加,有机结合态在阳极附近总量减少、阴极附近总量增加。上述结论揭示了电动修复的土壤镉污染的主要机制,通过镉的运动轨迹和形态分布,可预测不同土壤的电动修复效果,同时能改变不同土壤的电动修复策略,为场地修复提供参考。  相似文献   

3.
消落带土壤氮素循环因植被群落演替和季节性淹水会影响整个库区水环境安全。选择三峡库区一级支流澎溪河消落带为研究区域,分别在潮土、紫色土和水稻土分布区采集3种自然草本(狗牙根、香附子、苍耳)和1种农作物(玉米)覆盖区土壤,分析了土壤无机氮形态以及氨化、硝化、亚硝化、反硝化功能菌数量和生化作用强度,并分析了氮转化菌数量、生化作用强度以及土壤理化特征之间的关系。研究结果表明:不同植物覆盖对消落带土壤无机氮和氮素生理群微生物及其功能影响显著;狗牙根和香附子覆盖土壤硝化、亚硝化微生物数量与作用强度高于苍耳和玉米,进而土壤硝态氮和亚硝态氮含量表现相同规律;狗牙根与香附子覆盖区土壤反硝化细菌数量与作用强度高于苍耳和玉米,有利于消落带对氮素的拦截转化;消落带植被覆盖度、土壤有机质、pH、无机氮形态与土壤微生物数量和功能相关性较强。狗牙根、香附子覆盖区土壤有机氮氨化过程弱于苍耳和玉米,而亚硝化、硝化、反硝化过程强于苍耳和玉米,有利于有机态氮的保持和铵态氮迅速转化,为消落带植被恢复和重建提供参考。  相似文献   

4.
氨氮在滦河三角洲典型包气带介质上的吸附性能研究   总被引:3,自引:1,他引:2  
田华 《环境工程学报》2011,5(3):507-510
包气带是地下水的天然屏障,也是氮素污染地下水的主要通道.以滦河三角洲包气带4种典型土壤粉砂、砂粉土、粉土以及粉质粘土为研究对象,通过静态吸附实验查明了4种不同土壤对氨氮的吸附性能.结果表明,4种土壤对氨氮的吸附主要发生在0~2 h,其吸附均符合二级吸附动力学方程;其等温吸附曲线均符合Langmuir模式,且最大吸附量分...  相似文献   

5.
Al3+胁迫对茶园土壤微生物区系及生理群的影响   总被引:2,自引:0,他引:2  
以茶园土壤为研究对象,通过外源添加Al3+溶液,研究了Al3+胁迫对茶园土壤微生物区系及生理群的影响.结果表明,茶园土壤中的不同种类的微生物对Al3+的敏感性不同,Al3+添加量升至0.8 g/kg时,放线菌、真菌有一定的耐受性,而细菌数量呈快速下降趋势,亚硝化细菌几乎不能成活,但随着Al3+添加量的进一步升高,放线菌...  相似文献   

6.
土壤柴油污染修复的抽气提取去除实验研究   总被引:2,自引:1,他引:1  
陈家军  田亮  李玮  金岚 《环境工程学报》2008,2(10):1416-1420
为得到土壤气相抽提(SVE)去除柴油的优化条件,进行了一维土柱抽气提取去除柴油污染物的实验研究,研究不同初始含水率、不同抽气量对污染土壤中柴油去除率的影响及不同深度残留柴油的变化规律。结果表明:在本实验模拟的范围内,抽气量越大,SVE处理效果越好;初始含水率越低,处理效果越好;此外,不同深度去除率变化的规律基本上是随深度的增大而减小。实验结果可为土壤轻油污染实际治理提供实验数据基础。  相似文献   

7.
含铁材料对污染水稻土中砷的稳定化效果   总被引:9,自引:0,他引:9  
通过化学实验方法,向砷污染水稻土中添加4种含铁材料(FeCl3、FeCl2、Fe0和Fe2O3),分析稳定后土壤中pH、砷形态及砷毒性浸出量的变化,研究4种含铁材料对污染水稻土中砷的稳定化效果。结果表明,FeCl3和FeCl2处理降低了土壤pH,Fe0和Fe2O3处理对土壤pH影响不大。4种含铁材料均明显降低了土壤中易溶态砷(WE-As)和毒性浸出砷含量。在最大添加量为8.00 g/kg时,FeCl3、FeCl2、Fe0和Fe2O3分别使易溶态砷比对照降低了86.4%、63.6%、77.3%和36.4%,使毒性浸出砷比对照降低了96.3%、88.9%、70.4%和30.4%。4种含铁材料均对水稻土壤中砷具有较好的稳定化效果,且能力大小依次为:FeCl3FeCl2、Fe0Fe2O3。Fe0和Fe2O3处理使WE-As、铝型砷(Al-As)、铁型砷(Fe-As)向钙型砷(Ca-As)和残渣态砷(RS-As)转化;FeCl3处理使土壤WE-As、Al-As向Fe-As、Ca-As和RS-As转化;FeCl2处理使土壤WE-As、Ca-As向Al-As、Fe-As转化,对RS-As影响不明显。说明Fe0固砷的机理与Fe2O3相似,与FeCl3有一定差异,与FeCl2的差异可能更大。  相似文献   

8.
pH和有机质对铬渣污染土壤中Cr赋存形态的影响   总被引:11,自引:1,他引:10  
选用3种不同的铬渣污染土壤作为试验样,通过调节其pH和有机质含量,并采用碱消解-共沉淀法和改良BCR顺序提取法,研究了pH和有机质含量对土壤中铬的价态及形态的影响。结果表明,总体上Cr(Ⅵ)含量随pH降低和有机质投加量增大而减小,Cr(Ⅲ)则增加,但土1各水平间差异均显著(F8.89),土2和土3只有部分水平间差异显著。同时,随pH降低和有机质投加量增大,酸可提取态Cr含量减小,可氧化态Cr增加,可还原态略有增加,表明酸性条件和有机质有利于Cr(Ⅵ)的还原和酸可提取态Cr向可还原态和可氧化态Cr的转化。  相似文献   

9.
不同条件对湿地土壤溶解性有机质提取的影响   总被引:1,自引:0,他引:1  
为获得提取土壤中溶解性有机质(DOM)的最佳条件,基于有色可溶性有机质(CDOM)紫外/可见光谱,利用单因素实验、正交实验探讨了提取剂种类、土水质量比、振荡时间、离心速率及时间、滤膜种类等不同条件对鄱阳湖典型消落带南矶山湿地土壤及沉积物中DOM提取的影响。结果表明,CDOM与溶解性有机碳(DOC)具有很好的线性正相关性,可用波长355nm处的吸光系数(ag(355))来表示CDOM浓度。振荡时间16h,水为提取剂时提取效果最佳。正交实验分析可知,土水质量比为1∶10,4 000r/min离心30min,选用0.45μm玻璃纤维滤膜,所得DOM提取效果最佳。各因素影响体现为:土水质量比滤膜种类离心速率离心时间。  相似文献   

10.
污染土壤胶体释放特征及其对锌运移的作用   总被引:2,自引:0,他引:2  
污染土壤样品采自辽宁省某炼锌企业周边农田.通过室内土柱淋溶实验,研究不同pH和离子强度下土壤胶体的释放特征以及对重金属Zn在土壤中运移的作用.结果表明,土壤胶体的释放均呈现先逐渐增强而后渐弱,并趋于稳定.pH和离子强度对土壤胶体的释放有明显的影响,弱酸(pH=6)条件最有利土壤中胶体的释放,其次是中性(pH=7)和碱性(pH=9)条件,在强酸(pH=4)条件下最弱.随离子强度增加,土壤中胶体的释放能力逐渐减弱.淋出液中胶体结合态Zn浓度均超过总Zn浓度的50%,且淋出液中的总Zn浓度与胶体的浓度相关性显著.经SPSS分析,pH=4、6、7和9时,该线性相关系数r分别为0.749、0.948、0.966和0.927,呈极显著相关关系.钙离子强度为0.001、0.01、0.1和0.5mmol/L时,相关系数r分别为0.921、0.895、0.947和0.907,也呈现极显著相关关系.说明土壤地下水中Zn的运移主要受胶体释放的控制.  相似文献   

11.
Kim JH  Han SJ  Kim SS  Yang JW 《Chemosphere》2006,63(10):1667-1676
The electrokinetic-Fenton (EK-Fenton) remediation of soil contaminated with phenanthrene was studied. Two different soils were chosen to investigate the effects of chemical properties, such as Fe oxide contents and acid soil buffer capacity. The H(2)O(2) concentrations in pore water, the electrical potential distributions and the electrical currents were monitored to assess the electrochemical effect in relation to the soil properties. Hadong caly had high acid buffer capacity, and thus the amount of electroosmotic flow was lager in the experiment with Hadong clay than with EPK kaolin. The major mechanism of phenanthrene removal was a degradation in the experiment with EPK Kaolin, while it was a simple transport away from the system in experiment with Hadong clay. It was mainly because of the lower acid buffering capacity and better H(2)O(2) stability in case with EPK Kaolin than with Hadong clay.  相似文献   

12.
The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.  相似文献   

13.
Acid washing and stabilization of an artificial arsenic-contaminated soil.   总被引:16,自引:0,他引:16  
An acid-washing process was studied on a laboratory scale to extract the bulk of arsenic(V) from a highly contaminated Kuroboku soil (Andosol) so as to minimize the risk of arsenic to human health and the environment. The sorption and desorption behavior of arsenic in the soil suggested the possibility of arsenic leaching under acidic conditions. Artificially contaminated Kuroboku soil (2830 mg As/kg soil) was washed with different concentrations of hydrogen fluoride, phosphoric acid, sulfuric acid, hydrogen chloride, nitric acid, perchloric acid, hydrogen bromide, acetic acid, hydrogen peroxide, 3:1 hydrogen chloride-nitric acid, or 2:1 nitric acid-perchloric acid. Phosphoric acid proved to be most promising as an extractant, attaining 99.9% arsenic extraction at 9.4% acid concentration in 6 h. Sulfuric acid also attained high percentage extraction. The arsenic extraction by these acids reached equilibrium within 2 h. Elovich-type equation best described most of the kinetic data for dissolution of soil components as well as for extraction of arsenic. Dissolution of the soil components could be minimized by ceasing acid washing in 2 h. The acid-washed soil was further stabilized by the addition of lanthanum, cerium, and iron(III) salts or their oxides or hydroxides which form insoluble complex with arsenic. Both salts and oxides of lanthanum and cerium were effective in immobilizing arsenic in the soil attaining less than 0.01 mg/l As in the leaching test.  相似文献   

14.
The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone.  相似文献   

15.
Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4-methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

16.
A diverse range of microorganisms capable of growth on phenylacetic acid as the sole source of carbon and energy were isolated from soil. Sixty six different isolates were identified and grouped according to 16S rRNA gene RFLP analysis. Subsequent sequencing of 16S rDNA from selected strains allowed further characterization of the phenylacetic acid degrading population isolated from soil. Nearly half (30) of the isolates are Bacillus species while the rest of the isolates are strains from a variety of genera namely, Arthrobacter, Pseudomonas, Rhodococcus, Acinetobacter, Enterobacter, Flavobacterium, and Paenibacillus. Sixty-one of the sixty-six strains reproducibly grew in defined minimal liquid culture medium (E2). All strains isolated grew when at least one hydroxylated derivative of phenylacetic acid was supplied as the carbon source, while 59 out of the 61 strains tested, accumulated ortho-hydroxyphenylacetic acid in the assay buffer; when pulsed with phenylacetic acid. Oxygen consumption experiments failed to indicate a clear link between phenylacetic acid and hydroxy-substituted phenylacetic acid in isolates from a broad range of genera.  相似文献   

17.
Abstract

Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4 ‐ methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

18.
The role of soil and bedrock in acid neutralizing processes has been difficult to quantify because of hydrological and biogeochemical uncertainties. To quantify those roles, hydrochemical observations were conducted at two hydrologically well-defined, steep granitic hillslopes in the Tanakami Mountains of Japan. These paired hillslopes are similar except for their soils; Fudoji is leached of base cations (base saturation <6%), while Rachidani is covered with fresh soil (base saturation >30%), because the erosion rate is 100-1000 times greater. The results showed that (1) soil solution pH at the soil-bedrock interface at Fudoji (4.3) was significantly lower than that of Rachidani (5.5), (2) the hillslope discharge pH in both hillslopes was similar (6.7-6.8), and (3) at Fudoji, 60% of the base cations leaching from the hillslope were derived from bedrock, whereas only 20% were derived from bedrock in Rachidani. Further, previously published results showed that the stream pH could not be predicted from the acid deposition rate and soil base saturation status. These results demonstrate that bedrock plays an especially important role when the overlying soil has been leached of base cations. These results indicate that while the status of soil acidification is a first-order control on vulnerability to surface water acidification, in some cases such as at Fudoji, subsurface interaction with the bedrock determines the sensitivity of surface water to acidic deposition.  相似文献   

19.
The effects of nitrilotriacetate (NTA) and citric acid applications on metal extractability from a multiply metal-contaminated soil, as well as on their uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Desorption of metals from the soil increased with chelate concentration, NTA being more effective than citric acid in solubilising the metals. Plants were grown in a sandy soil collected from a contaminated field site and polluted by Cd, Cr, Cu, Pb and Zn. After 43 days of plant growth, pots were amended with NTA or citric acid at 5 mmol kg-1 soil. Control pots were not treated with any chelate. Harvest of plants was performed 1 week after chelate addition. Soil water-, NH4NO3- and DTPA-extractable Cd, Cu, Pb and Zn fractions were enhanced only in the presence of NTA. In comparison to unamended plants, Indian mustard shoot dry weights suffered significant reductions following NTA application. NTA treatment increased shoot metal concentrations by a factor of 2-3, whereas citric acid did not induce any difference compared to the control. Chromium was detected in the above-ground tissues only after NTA amendment. Due to differences in dry matter yield, a significant enhancement of metal uptake was observed in NTA-treated plants for Cu and Zn.  相似文献   

20.
A fungal strain able to use atrazine (2-chloro-4-ethylamino-5-isopropylamino-1,3,5-triazine) as a source of nitrogen was isolated from a corn field soil that has been previously treated with the herbicide. This strain was purified and acclimatized to atrazine at a higher level in the laboratory. A supplemented N was required to trigger the reaction. Atrazine was degraded at a faster rate in inoculated mineral salt medium (MSM) than non-inoculated MSM. Within 20 days, nearly 34% of the atrazine was degraded in inoculated medium while only 2% of the herbicide was degraded in non-inoculated medium. Degradation of atrazine by the isolated fungal strain was also studied in sterile and non-sterile soil to determine the compatibility of the isolated strain with native microorganisms in soil. The degradation of atrazine was found to be more in inoculated sterile soil than in inoculated non-sterile soil. Cell free extract (CFE) of fungal mycelium degraded about 50% of the atrazine in buffer in 96 hours compared to the control. Four atrazine metabolites were isolated and characterized by LCMS. On the basis of morphological parameters the isolate was identified as Penicillium species. Results indicated that the microorganism may be useful for remediation of atrazine-contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号