首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Toxicity of methyl-tert-butyl ether to freshwater organisms   总被引:5,自引:0,他引:5  
Increased input of the fuel oxygenate methyl-tert-butyl ether (MTBE) into aquatic systems has led to concerns about its effect(s) on aquatic life. As part of a study conducted by University of California scientists for the State of California, the Aquatic Toxicology Laboratory, UC Davis, reviewed existing literature on toxicity of MTBE to freshwater organisms, and new information was generated on chronic, developmental toxicity in fish, and potential toxicity of MTBE to California resident species. Depending on time of exposure and endpoint measured, MTBE is toxic to various aquatic organisms at concentrations of 57-> 1000 mg/l (invertebrates), and 388-2600 mg/l (vertebrates). Developmental effects in medaka (Oryzias latipes) were not observed at concentrations up to 480 mg/l, and all fish hatched and performed feeding and swimming in a normal manner. Bacterial assays proved most sensitive with toxicity to Salmonella typhimurium measured at 7.4 mg/l within 48 h. In microalgae, decreased growth was observed at 2400 and 4800 mg/l within 5 days. MTBE does not appear to bioaccumulate in fish and is rapidly excreted or metabolized. Collectively, the available data suggests that at environmental MTBE exposure levels found in surface waters (< 0.1 mg/l) this compound is likely not acutely toxic to aquatic life. However, more information is needed on chronic and sublethal effects before we can eliminate the possibility of risk to aquatic communities at currently detected concentrations.  相似文献   

2.
Derivation of ambient water quality criteria for formaldehyde.   总被引:2,自引:0,他引:2  
D W Hohreiter  D K Rigg 《Chemosphere》2001,45(4-5):471-486
This paper describes the derivation of aquatic life water quality criteria for formaldehyde, developed in accordance with United States Environmental Protection Agency's (USEPA's) Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. The initial step in deriving water quality criteria was to conduct an extensive literature search to assemble available acute and chronic toxicity data for formaldehyde. The literature search identified a large amount of information on acute toxicity of formaldehyde to fish and aquatic invertebrates. These acute data were evaluated with respect to data quality, and poor quality or uncertain data were excluded from the data base. The resulting data base met the USEPA requirements for criteria derivation by having data for at least one species in at least eight different taxonomic families. One shortcoming of the literature-derived data base, however, was that few studies involved analytical confirmation of nominal formaldehyde concentrations and reported toxicity endpoints. Also, there were relatively few data on chronic toxicity. The acute toxicity data set consisted of data for 12 species of fish, 3 species of amphibians, and 11 species of invertebrates. These data were sufficient, according to USEPA guidelines, to calculate a final acute value (FAV) of 9.15 mg/l, and an acute aquatic life water quality criterion (one-half the FAV) of 4.58 mg/l. A final acute-chronic ratio (ACR) was calculated using available chronic toxicity data and USEPA-recommended conservative default assumptions to account for missing data. Using the FAV and the final ACR (5.69), the final chronic aquatic life water quality criterion was determined to be 1.61 mg/l.  相似文献   

3.
In this study, we compared the sensitivity of freshwater and marine organisms to two structurally similar substances, acrylic acid and methacrylic acid. Reported acute toxicity data (L(E)C50-values) for freshwater organisms range from 0.1 to 222 mg/l and 85 to >130 mg/l for acrylic acid and methacrylic acid, respectively. The large variation in toxicity data for acrylic acid is due to a specific toxicity to certain species of freshwater microalgae, with algae EC50-values being two to three orders of magnitude lower than L(E)C50-values reported for fish and invertebrates. To evaluate the sensitivity of marine organisms, ecotoxicity data was generated for ten species of microalgae, one invertebrate species and one fish species. For methacrylic acid, we found a marine acute toxicity that ranged from 110 to >1260 mg/l, which is comparable to reported data on freshwater organisms. In strong contrast, the resulting L(E)C50-values for acrylic acid ranged from 50 to >1000 mg/l, and there was no specific sensitivity of marine algae when compared to marine invertebrates and fish. For acrylic acid, therefore, use of the available freshwater toxicity data for an effects assessment for the marine environment is likely to overestimate the hazard and risk from this substance. Overall, the results of the study suggest that ecotoxicity data generated on freshwater species may not always be appropriate for the effects assessments of organic chemicals in the marine environment, thus emphasising the importance of using ecologically relevant data to assess environmental risk.  相似文献   

4.
Seven-day static renewal tests with Ceriodaphnia dubia were used to document the chronic toxicity of ethylene glycol ethers and acetates to this invertebrate. The 7-d EC10 (effective concentrations inducing an inhibition of 10% of the reproduction of the tested organisms) values ranged from 0.06 to 1025 mg/l. While a survey of the literature showed that the acute toxicity of these chemicals appeared negligible, our results clearly revealed the potential chronic effects of some of them to this organism occupying an important trophic level in the aquatic ecosystems. The usefulness of this kind of test to better estimate the adverse effects of glycol ethers was stressed.  相似文献   

5.
Pharmaceutical products for humans and animals, as well as their related metabolites end up in the aquatic environment after use. Recent investigations show that concentrations of pharmaceuticals are detectable in the order of ng/l-mug/l in municipal wastewater, groundwater and also drinking water. Little is known about the effects, and the hazard of long-term exposure to low concentrations of pharmaceuticals for non-target aquatic organisms. This study was designed to assess the ecotoxicity of furosemide, a potent diuretic agent, and its photoproduct in the aquatic environment. Bioassays were performed on bacteria, algae, rotifers and microcrustaceans to assess acute and chronic toxicity, while the SOS Chromotest and the Ames test were utilized to detect the genotoxic potential of the investigated compounds. A first approach to risk characterization was to calculate the environmental impact of furosemide by measured environmental concentration and predicted no effect concentration ratio (MEC/PNEC). To do so we used occurrence data reported in the literature and our toxicity results. The results showed that acute toxicity was in the order of mg/l for the crustaceans and absent for bacteria and rotifers. Chronic exposure to these compounds caused inhibition of growth population on the consumers, while the algae did not seem to be affected. A mutagenic potential was found for the photoproduct compared to the parental compound suggesting that byproducts ought to be considered in the environmental assessment of drugs. The risk calculated for furosemide suggested its harmlessness on the aquatic compartment.  相似文献   

6.
The acute toxicity of sulfonylurea herbicides bensulfuron-methyl and cinosulfuron was tested on the five species of freshwater phytoplankton: Scenedesmus acutus, Scenedesmus subspicatus, Chlorella vulgaris and Chlorella saccharophila. Herbicide concentrations eliciting a 50% growth reduction over 96 h (EC50) ranged from 8 to 104 mg/l for cinosulfuron and from 0.015 to 6.2 mg/l for bensulfuron-methyl. The pesticides bensulfuron-methyl, atrazine and benthiocarb were more toxic than cinosulfuron, chlorsulfuron, molinate, fenitrothion and pyridaphenthion in a toxicity study with the same algal species. The transformation of effective concentrations of bensulfuron-methyl and cinosulfuron and other pesticides, obtained from toxicity measurements, into percent of the saturation level in water is used as a first evaluation of potential hazard to aquatic systems. The herbicides cinosulfuron, methyl-bensulfuron, atrazine and chlorsulfuron were more dangerous than the herbicides benthiocarb and molinate and than the insecticides fenitrothion and pyridaphenthion, in a study of hazard evaluation. The two species of Chlorella were more tolerant to both herbicides than the two species of Scenedesmus. A potential environmental hazard of sulfonylurea herbicides to aquatic systems has to be expected even at low environmental concentrations.  相似文献   

7.
Acute and chronic toxicity of veterinary antibiotics to Daphnia magna   总被引:49,自引:0,他引:49  
The acute and chronic toxicity of nine antibiotics used both therapeutically and as growth promoters in intensive farming was investigated on the freshwater crustacean Daphnia magna. The effect of the antibiotics metronidazole (M), olaquindox (OL), oxolinic acid (OA), oxytetracycline (OTC), streptomycin (ST), sulfadiazine (SU), tetracycline (TC), tiamulin (TI) and tylosin (TY) was tested in accordance to the ISO (1989) and OECD (1996) standard procedures. The acute toxicities (48-h EC50 value, mg/l) in decreasing order were OA (4.6), TI (40), SU (221), ST (487), TY (680) and OTC (approximately 1000). NOECs were 340 mg/l for TC and 1000 mg/l for M and OL. Toxic effect on reproduction occurred generally at concentrations, which were one order of magnitude below the acute toxic levels. The chronic toxicity (EC50 values, mg/l) in the D. magna reproduction test in decreasing order were TI (5.4), SU (13.7), TC (44.8) and OTC (46.2). The NOECs (mg/l) obtained in the reproduction test with OA, ST, TY and M were 0.38 for OA, 32 for ST, 45 for TY and 250 for M. The observed toxicity of OA to D. magna indicates that this substance, which is a commonly used feed additive in fish farms, has a potential to cause adverse effects on the aquatic environment.  相似文献   

8.
Presently, in the Globally Harmonised System of Classification and Labelling of Chemicals the classification of substances for long-term effects to aquatic life is based on acute toxicity in combination with degradation and/or bioaccumulation potential. Recently an OECD Working Group was created to develop the classification scheme to accommodate chronic toxicity data related to aquatic organisms for assigning a chronic hazard category. This study focuses on a new approach for setting chronic toxicity cut-off values based on Chemicals Toxicity Distributions (CTDs). A CTD is obtained through statistical fitting of the data used by regulatory bodies for setting hazard-based classifications. The CTDs were made using the lowest aquatic NOEC value of each chemical. A review of different toxicological sources reporting acute aquatic toxicities was carried out. Initially, the data were arranged according to the specific source and distributions for key taxonomic groups (i.e. fishes, crustaceans and algae) were evaluated separately. In most cases, no significant departures from normality were observed. Thereafter, a compiled database containing >900 values was developed and the CTDs were constructed for each taxonomic group. Significant deviation from normality (P < 0.05) was observed in the fishes and crustaceans' CTDs. However, this deviation was apparently produced by the presence of only seven values with NOECs <1 x 10(-5) mg l(-1), while high correlation between the data and the normal scores (r-values>or= 0.989) indicated that the data were samples from normal distributions. From these observations, potential cut-off values would allow quantitative estimations of the percentage of chemicals falling into each specific category. This approach results in a simple classification hazard scheme where most chemicals are covered in one of the categories, allowing a clear distribution of the chemicals among three categories for chronic toxicity.  相似文献   

9.
Brausch JM  Rand GM 《Chemosphere》2011,82(11):1518-1532
Considerable research has been conducted examining occurrence and effects of human use pharmaceuticals in the aquatic environment; however, relatively little research has been conducted examining personal care products although they are found more often and in higher concentrations than pharmaceuticals. Personal care products are continually released into the aquatic environment and are biologically active and persistent. This article examines the acute and chronic toxicity data available for personal care products and highlights areas of concern. Toxicity and environmental data were synergized to develop a preliminary hazard assessment in which only triclosan and triclocarban presented any hazard. However, numerous PCPs including triclosan, paraben preservatives, and UV filters have evidence suggesting endocrine effects in aquatic organisms and thus need to be investigated and incorporated in definitive risk assessments. Additional data pertaining to environmental concentrations of UV filters and parabens, in vivo toxicity data for parabens, and potential for bioaccumulation of PCPs needs to obtained to develop definitive aquatic risk assessments.  相似文献   

10.
In previous studies, boron compounds were considered to be of comparatively low toxicity in the aquatic environment, with predicted no effect concentration (PNEC) values ranging around 1 mg B/L (expressed as boron equivalent). In the present study, we describe an evaluation of toxicity data for boron available for the aquatic environment by different methods.For substances with rich datasets, it is often possible to perform a species sensitivity distribution (SSD). The typical outcome of an SSD is the Hazardous Concentration 5% (HC5), the concentration at which 95% of all species are protected with a probability of 95%. The data set currently available on the toxic effects of boron compounds to aquatic organisms is comprehensive, but a careful evaluation of these data revealed that chronic data for aquatic insects and plants are missing. In the present study both the standard assessment factor approach as well as the SSD approach were applied. The standard approach led to a PNEC of 0.18 mg B/L (equivalent to 1.03 mg boric acid/L), while the SSD approach resulted in a PNEC of 0.34 mg B/L (equivalent to 1.94 mg boric acid/L). These evaluations indicate that boron compounds could be hazardous to aquatic organisms at concentrations close to the natural environmental background in some European regions. This suggests a possible high sensitivity of some ecosystems for anthropogenic input of boron compounds. Another concern is that the anthropogenic input of boron could lead to toxic effects in organisms adapted to low boron concentration.  相似文献   

11.
The fate, effects, and potential environmental risks of ethylene glycol (EG) in the environment were examined. EG undergoes rapid biodegradation in aerobic and anaerobic environments (approximately 100% removal of EG within 24 h to 28 days). In air, EG reacts with photo-chemically produced hydroxyl radicals with a resulting atmospheric half-life of 2 days. Acute toxicity values (LC(50)s and EC(50)s) were generally >10,000 mg/l for fish and aquatic invertebrates. The data collectively show that EG is not persistent in air, surface water, soil, or groundwater, is practically non-toxic to aquatic organisms, and does not bioaccumulate in aquatic organisms. Potential long-term, quasi-steady state regional concentrations of EG estimated with a multi-media model for air, water, soil, and sediment were all less than predicted no effect concentrations (PNECs).  相似文献   

12.
Camargo JA  Alonso A  Salamanca A 《Chemosphere》2005,58(9):1255-1267
Published data on nitrate (NO3-) toxicity to freshwater and marine animals are reviewed. New data on nitrate toxicity to the freshwater invertebrates Eulimnogammarus toletanus, Echinogammarus echinosetosus and Hydropsyche exocellata are also presented. The main toxic action of nitrate is due to the conversion of oxygen-carrying pigments to forms that are incapable of carrying oxygen. Nitrate toxicity to aquatic animals increases with increasing nitrate concentrations and exposure times. In contrast, nitrate toxicity may decrease with increasing body size, water salinity, and environmental adaptation. Freshwater animals appear to be more sensitive to nitrate than marine animals. A nitrate concentration of 10 mg NO3-N/l (USA federal maximum level for drinking water) can adversely affect, at least during long-term exposures, freshwater invertebrates (E. toletanus, E. echinosetosus, Cheumatopsyche pettiti, Hydropsyche occidentalis), fishes (Oncorhynchus mykiss, Oncorhynchus tshawytscha, Salmo clarki), and amphibians (Pseudacris triseriata, Rana pipiens, Rana temporaria, Bufo bufo). Safe levels below this nitrate concentration are recommended to protect sensitive freshwater animals from nitrate pollution. Furthermore, a maximum level of 2 mg NO3-N/l would be appropriate for protecting the most sensitive freshwater species. In the case of marine animals, a maximum level of 20 mg NO3-N/l may in general be acceptable. However, early developmental stages of some marine invertebrates, that are well adapted to low nitrate concentrations, may be so susceptible to nitrate as sensitive freshwater invertebrates.  相似文献   

13.
The acute toxicity of 468 organic pollutants to planktonic crustaceans (Branchiopoda, Copepoda and Ostracoda) from pre-existing data was compared by means of statistical analysis and relative tolerance indices (Trel). A surrogate species commonly used in toxicity bioassays (Daphnia magna) showed toxicity levels--within one order of magnitude--similar to all other Cladocera species, at least for 82% of the chemicals studied. All neurotoxic insecticides except neonicotinoids, PCBs, organometallic compounds and PAHs are the most toxic substances to these organisms. Sensitivity levels among taxa were compared for individual chemicals as well as groups of chemicals with similar characteristics. Whilst there are marked differences in sensitivity among taxa and particular groups of chemicals, no consistent trends were found for freshwater and saltwater species in relation to the latter groups. No correlation between LC50 and size of these organisms was found other than by chance, making extrapolations based on allometric equations impossible.  相似文献   

14.
The results of four toxicity bioassays of selected anionic and nonionic surface active agents were presented. Three widely used anionic surfactants that belong to alkyl sulphates (AS), alkylbenzene sulphonates (LAS) and alkylpolyoxyethylene sulphates (AES) as well as nonionic surfactants: polyoxyethylene alkyl ethers (AE) and polyoxylethylene alkylphenyl ethers (APE) were tested. Three different toxicity assays to aquatic organisms: Physa acuta Draparnaud, Artemia salina and Raphidocelis subcapitata were applied. Additionally, the genotoxicity test with Bacillus subtilis M45 Rec- and H17 Rec+ strains was performed. The obtained results showed that none of the surfactants studied was genotoxic at the concentration 1000 mg l(-1). On the basis of toxicity tests to aquatic organisms all tested anionic surfactants were harmful (LC50 between 10 and 100 mg l(-1)), whereas nonionic ones were toxic (LC50 between 1 and 10 mg l(-1)) or even highly toxic (LC50 below 1 mg l(-1)). Moreover, the bigger was the molecular weight of the tested compound, the higher toxicity was observed.  相似文献   

15.
Pharmaceuticals enter natural waters through sewage effluent and landfill leachates and present an unknown risk to aquatic species including freshwater invertebrates. In this study the acute and chronic toxicity of 10 drugs, commonly prescribed in the UK i.e. ibuprofen, paracetamol, acetylsalicylic acid, amoxicillin, bendroflumethiazide, furosemide, atenolol, diazepam, digoxin, amlodipine were assessed using the cnidarian Hydra vulgaris. In a 7 day exposure period there were no effects on survival at concentrations up to 1.0 mg l(-1) and after 17 days neither feeding nor bud formation were adversely affected. However the ability of dissected polyps to regenerate a hypostome, tentacles and foot was inhibited by diazepam, digoxin and amlodipine at 10 microg l(-1). It is suggested that other drugs targeted at mammalian receptor systems may also affect aquatic invertebrates although it is unlikely, at their low environmental concentrations, that those examined in this study actually present a risk.  相似文献   

16.
Yin D  Hu S  Jin H  Yu L 《Chemosphere》2003,52(1):67-73
Freshwater quality criteria of 2,4,6-trichlorophenol (2,4,6-TCP) were developed with particular reference to the aquatic biota in China, and based on USEPA's guidelines. Acute toxicity tests were performed on nine different domestic species indigenous to China to determine 48 h LC(50) and 96 h LC(50) values for 2,4,6-TCP. In addition, 21 d survival-reproduction test with Daphnia magna, 30 d embryo-larval test with Carassius auratus, 60 d fry-juvenile test with Ctenopharyngodon idellus, 30 d early life stage test with Bufo bufo gargarizans and 96 h growth inhibition test with Scenedesmus obliqaus were also conducted to estimate lower chronic limit and upper chronic limit values. The final acute value (FAV) was 2.01 mg/l 2,4,6-TCP. Acute-to-chronic ratios ranged from 5.01 to 12.2. The final chronic value (FCV) and the final plant value (FPV) of 2,4,6-TCP were 0.226 and 2.24 mg/l respectively. Based on FAV, FCV and FPV for 2,4,6-TCP, a criteria maximum concentration of 1.01 mg/l and a criterion continuous concentration of 0.226 mg/l were derived. The results of this study provide useful data for deriving national or local water quality criteria for 2,4,6-TCP based on aquatic biota in China.  相似文献   

17.
Chen CY  Lin JH 《Chemosphere》2006,62(4):503-509
A closed-system algal toxicity test with no headspace was applied to evaluate the toxicity of chlorophenols to Pseudokirchneriella subcapitata. The dissolved oxygen production and the growth rate based on cell density were the response endpoints. Phenol and seven chlorophenols were tested using the above test technique. Median effective concentrations (EC50) range from 0.004 to 25.93 mg/l (based on DO production) and 0.0134 to 20.90 mg/l (based on growth rate). No-observed-effect concentration (NOEC) is within the range of 0.001-8.19 mg/l. In general, growth rate is a more sensitive response endpoint than the oxygen production, except for the case of pentachlorophenol. However, the differences in sensitivity between the two parameters were marginal. Furthermore, quantitative structure-activity relationships (QSAR's) based on the n-octanol/water partition coefficient (log P) and the acid dissociation constant (pK(a)) values were established with R(2) ranged from 0.90 to 0.96. From literature data also based on P. subcapitata, the new test method is 1.65-108 times more sensitive than the conventional algal batch tests. A completely different relative-sensitivity relationship among various aquatic organisms was thus observed. The results of this study indicate that the toxicity data of volatile organic chemicals derived by conventional algal toxicity tests may severely underestimate the impact of these toxicants. Our results show that alga is very sensitive to chlorophenols compared to other aquatic organisms such as the luminescent bacteria (the Microtox test), Daphnia magna, and rainbow trout.  相似文献   

18.
Freshwater quality criteria for 2,4-dichlorophenol (2,4-DCP) were developed with particular reference to the aquatic biota in China, and based on USEPA's guidelines. Acute toxicity tests were performed on nine different domestic species indigenous to China to determine 48-h LC50 and 96-h LC50 values for 2,4-DCP. In addition, 21 day survival-reproduction tests with Daphnia magna, 30-day embryo-larval tests with Carassius auratus, 60 day fry-juvenile test with Ctenopharyngodon idellus, 30 d early life stage tests with Bufo bufo gargarizans and 96 h growth inhibition tests with Scenedesms obliqaus were conducted, to estimate lower chronic limit (LCL) and upper chronic limit (UCL) values. The final acute value (FAV) was 2.49 mg/l 2,4-DCP. Acute-to-chronic ratios (ACR) ranged from 3.74 to 22.5. The final chronic value (FCV) and the final plant value (FPV) of 2.4-DCP were 0.212 mg/l and 7.07 mg/l respectively. Based on FAV, FCV, and FPV, a criteria maximum concentration (CMC) of 1.25 mg/l and a criterion continuous concentration (CCC) of 0.212 mg/l were derived. The results of this study provide useful data for deriving national or local water quality criteria for 2,4-DCP based on aquatic biota in China.  相似文献   

19.
The acute toxicity of permethrin, resmethrin, and cypermethrin to four species of aquatic non-target invertebrate organisms, found in estuarine and freshwater ecosystems, was evaluated. Artemia franciscana and Brachionus plicatilis larvae, as estuarine organisms, and Brachionus calyciflorus and Thamnocephalus platyurus larvae, as freshwater organisms, were exposed for 24 h to concentrations of these pyrethroids, and the LC(50) values were compared. The freshwater organisms were more sensitive to these pyrethroids than estuarine organisms tested. A. franciscana larvae were more tolerant organisms than B. plicatilis larvae. The freshwater organisms tested have demonstrated to be a good alternative to the standard acute toxicity assays using Daphnia, although Brachionus plycatilis larvae were more sensitive to these pyrethroid insecticides than T. platyurus. Analysis of 24 h LC(50) values of these pyrethroids, determined by static bioassays, revealed that the rank order of toxicity was: permethrin相似文献   

20.
Goal, Scope and Background Chlorite (ClO2ˉ) is a primary decomposition product when chlorine dioxide (ClO2) is added during water treatment; therefore the toxic effects of both compounds on aquatic organisms are possible. Limited data are available concerning their toxicity to fish. The aim of this study was to investigate sensitivity of rainbow trout to acute and chronic toxicity of chlorine dioxide and chlorite, and to estimate the Maximum-Acceptable-Toxicant-Concentration (MATC) of those compounds in fish. Methods The acute and chronic toxicity of chlorine dioxide and chlorite to larval and adult rainbow trout was investigated in 96-hour to 20-day laboratory exposures evaluating the wide range spectrum of biological indices under semi-static conditions. Results and Discussion Median lethal concentration (96-hour LC50) values derived from the tests were: 2.2 mg/l for larvae; 8.3 mg/l for adult fish and 20-day LC50 for larvae was 1.6 mg/l of chlorine dioxide, respectively. Chlorite was found to be from 48 to 18 times less acutely toxic to larvae and adult fish, correspondingly. Both chemical compounds induced similar toxic effects in rainbow trout larvae during chronic tests (they affected cardio-respiratory and growth parameters), but chlorine dioxide had a higher toxic potency than chlorite. A significant decrease in the heart rate and respiration frequency of larvae was established. However, within an increase in exposure duration recovery of cardio-respiratory responses was seen to have occurred in larvae exposed to chlorite. Meanwhile, in larvae exposed to chlorine dioxide, a significant decrease in cardio-respiratory responses remained during all 20-day chronic bioassays. Chlorine dioxide also more strongly affected growth parameters of rainbow trout larvae at much lower test concentrations. Decreased rate of yolk-sack resorption occurred only in the tests with chlorine dioxide. Conclusions Maximum-Acceptable-Toxicant-Concentration (MATC) of 0.21 mg/l for chlorine dioxide and of 3.3 mg/l for chlorite to fish was derived from chronic tests based on the most sensitive parameter of rainbow trout larvae (growth rate). According to substance toxicity classification accepted for Lithuanian inland waters, chlorine dioxide and chlorite can be referred to substances of \moderate\ toxicity to fish. Recommendations and Outlook Due to its very reactive nature, chlorine dioxide is rapidly (in a few hours) reduced to chlorite, which is persistent also as a biocide but 16 times less toxic to fish, according to MATC. Therefore, it is much more likely that fish will be exposed to chlorite than to chlorine dioxide in natural waters. Presently accepted, the Maximum-Permitted-Concentration of total residual chlorine (TRC) in waste-water discharging into receiving waters is 0.6 mg/l. If this requirement will not be exceeded, it is unlikely that fish would be exposed to lethal or even to sublethal concentrations of chlorine dioxide or chlorite. Furthermore, chlorine dioxide does not generate toxic nitrogenous (chloramines) or carcinogenic organic residuals (trihalomethanes). All these properties make chlorine dioxide a more promising biocide than chlorine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号