首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Five factors contribute to episodic depressions in pH and ANC during hydrologic events in low-order streams in Maine: (1) increases of up to 50 microeq litre(-1) NO3; (2) increases of up to 75 microeq litre(-1) organic acidity; (3) increases of as much as 0.3 in the anion fraction of SO4; (4) as much as 100 microeq litre(-1) acidity generated by the salt-effect in soils; and (5) typically < or = 40% dilution by increased discharge. In conjunction with increased discharge, factors 1, 2 or 4 appear necessary to depress pH to less than 5.0. The chemistry of individual precipitation events is irrelevant to the generation of acidic episodes, except those caused by high loading of neutral salts in coastal regions. Increases in discharge, but not necessarily in dilution of solutes, in combination with the chronically high SO4 from atmospheric deposition, provide the antecedent chemical conditions for episodic acidification. Differences in antecedent moisture conditions determine the processes that control output of either ANC or acidifying agents to aquatic systems.  相似文献   

2.
We investigated the relations between mountain streamwater chemistry and atmospheric pollution in an arca of 1611 km2 of the Czech Republic by comparing concentrations of SO4. NO3, Cl, Ca and the pH at 432 localities at the time of high (1984-1986) and relatively low (1996-2000) acidic atmospheric deposition. Medians of Cl. SO4, and NO3 decreased by 17, 96 and 60 microeq l(-1), or by 23, 17 and 49%, respectively, during 12 +/- 2 years. The decreased Cl corresponds to decreased emission of industrial Cl (as HCl). The decreased stream SO4 was proportionally lower than the 71% decrease in S-emissions due to leaching of previously accumulated SO4 from soils and non-zero background concentrations. Decreases of NO3 up to 60% in streamwaters with pH < or = 6 was greater than the decrease of N emission in central Europe, about 35%. Extensive regional decrease of NO3 is surprising and is probably described for the first time. The difference in NO3 concentrations between the two periods was probably enhanced by (a) an increase of mineralisation of forest floor in the mid-1980s and (b) by higher uptake of N in the late-1990s. The median pH of the 432 streams did not change but the pH of the sub-population with pH < 6 in the mid-1980s recovered substantially. The pH of circum-neutral streams (pH > 6.5) decreased even as acidic atmospheric deposition decreased.  相似文献   

3.
Modeling recovery of Swedish ecosystems from acidification   总被引:2,自引:0,他引:2  
Dynamic models complement existing time series of observations and static critical load calculations by simulating past and future development of chemistry in forest and lake ecosystems. They are used for dynamic assessment of the acidification and to produce target load functions, that describe what combinations of nitrogen and sulfur emission reductions are needed to achieve a chemical or biological criterion in a given target year. The Swedish approach has been to apply the dynamic acidification models MAGIC, to 133 lakes unaffected by agriculture and SAFE, to 645 productive forest sites. While the long-term goal is to protect 95% of the area, implementation of the Gothenburg protocol will protect approximately 75% of forest soils in the long term. After 2030, recovery will be very slow and involve only a limited geographical area. If there had been no emission reductions after 1980, 87% of the forest area would have unwanted soil status in the long term. In 1990, approximately 17% of all Swedish lakes unaffected by agriculture received an acidifying deposition above critical load. This fraction will decrease to 10% in 2010 after implementation of the Gothenburg protocol. The acidified lakes of Sweden will recover faster than the soils. According to the MAGIC model the median pre-industrial ANC of 107 microeq L(-1) in acid sensitive lakes decreased to about 60 microeq L(-1) at the peak of the acidification (1975-1990) and increases to 80 microeq L(-1) by 2010. Further increases were small, only 2 microeq L(-1) between 2010 and 2040. Protecting 95% of the lakes will require further emission reductions below the Gothenburg protocol levels. More than 7000 lakes are limed regularly in Sweden and it is unlikely that this practice can be discontinued in the near future without adverse effects on lake chemistry and biology.  相似文献   

4.
The study investigated whether plasmatic parameters in fish such as Cl- content could serve as physiological indicators to evaluate water quality. The variations of plasma Cl- content in two fish species caught in a wide range of rivers representative of the hydrographic system of Lorraine (N-E France) were investigated. First, we studied autochthonous populations of chub (Leuciscus cephalus) which is a widespread species in the rivers of Lorraine. Organisms living in highly mineralised rivers (>1500 microScm(-1))--either naturally or due to salt mine contamination--showed plasma Cl- content significantly greater than organisms living in river with a lower mineralisation. Second, we investigated plasma Cl- content of brown trout (Salmo trutta fario) in poorly mineralised streams (<80 microS cm(-1)) with different degrees of acidification, both on autochthonous and transferred organisms. While indigenous trout maintained their Cl- content even in the acidic streams, transferred trout exhibited an important decrease of Cl- content after 48 h of exposure under acidic conditions.  相似文献   

5.
The South Pennines, an area of acid-sensitive geology at the centre of a major industrial region, have undergone perhaps the most severe historic exposure to sulphur and nitrogen deposition in the UK. This study addresses a lack of existing research on the region by presenting the findings of a survey of 62 surface waters sampled during a 1-week period in April 1998. Results indicate that acidification in the region is acute; 27 of the sampled surface waters had a negative acid neutralising capacity (ANC) and 28 had a pH below 5.0. Minimum recorded pH values were below 4.0. Non-marine sulphate levels were extremely high (median 222 microeq/1), and widespread high nitrate concentrations (median 41 microeq/1) suggest that soils in the region as a whole may be at an advanced stage of nitrogen saturation. A consistent relationship was identified between site acidity and the balance between the major weathering-derived cations, calcium and magnesium, and sulphate. This could in turn be linked to catchment soil type and land use, with the most acidic conditions occurring in peat-dominated catchments, where weathering is minimal and the influence of atmospheric deposition most pronounced. Percentage of peat in each catchment was the single best predictor of surface water acidity. Nitrate concentrations, although not a dominant control on acidity, varied significantly according to land use. Elevated concentrations were observed in catchments containing forestry, due to enhanced deposition inputs, and in catchments containing improved land, linked to fertiliser use. Ammonium concentrations, although low at most catchments, were a significant component of the inorganic nitrogen total in a number of surface waters draining waterlogged peat catchments.  相似文献   

6.
Episodic acidification of streams, identified in the late 1980s as one of the most significant environmental problems caused by acidic deposition, had not been evaluated since the early 1990s despite decreasing levels of acidic deposition over the past decade. This analysis indicates that episodic acidification of streams in upland regions in the northeastern United States persists, and is likely to be much more widespread than chronic acidification. Depletion of exchangeable Ca in the mineral soil has decreased the neutralization capacity of soils and increased the role of the surface organic horizon in the neutralization of acidic soil water during episodes. Increased accumulation of N and S in the forest floor from decades of acidic deposition will delay the recovery of soil base status, and therefore, the elimination of acidic episodes, which is anticipated from decreasing emissions.  相似文献   

7.
Fifty-six headwater Canadian Shield lakes were repetitively sampled from 1979 to 88 to determine their response to changes in acidic deposition of the period. Annual wet sulphate loadings varied between 38 and 83 meq m(-2), with highest deposition in the late 1970s followed by somewhat lower but variable deposition in the 1980s. Median pH of the lakes increased 0.42 pH units from 1979 to 1985 and decreased by 0.15 units between 1985 and 1988. Short water renewal times (x=1.1 y) promoted rapid equilibration. Since lake were so responsive to changes in SO4(2-) inputs, they were at or near steady state at all times. Comparison of predicted original pH and ANC with 1979 data indicate a median decline of 0.45 pH units and a loss of 34 microeq litre(-1). ANC. Four of 9 lakes were found to be historically fishless, based on the continued presence of Chaoborus americanus in sediment cores. The remaining five lakes historically had fish populations, but fish were not collected in 1979 when pH ranged betwen 4.6 and 5.3. By 1987, fish species were found in five of these lakes where pH had increased on average by 0.9 pH units. Our data indicate that water quality improvements could allow for the reinvasion or resumption of recruitment for a significant number of Ontario lakes.  相似文献   

8.
The catchments of East and West Bear Brooks, Maine, USA, have been hydrologically and chemically monitored for 3.5 years. Stream chemistries and hydrographs are similar. These clear water streams are low in ANC (0-70 microeq litre(-1)), with variations caused by changing concentrations of base cations, SO4, NO3 and Cl. The latter range between 90-120, 0-40 and 65-75 microeq litre(-1), respectively. The West Bear catchment is being treated with six applications per year of dry (NH4)2SO4 at 1800 eq ha(-1) year(-1). After one year of treatment, the response of the stream chemistry and the response modelled by MAGIC are similar. Retentions of NH4 and SO4 are nearly 100% and greater than 80%, respectively. The additional flux of SO4 is compensated principally by an increased Ca concentration. Episodes of high discharge in the treated catchment are now characterized by lower ANC and pH, and higher Al than prior to the manipulation. Concentrations of NO3 have increased about 10 microeq litre(-1) during the dormant season, presumably due to additional nitrification of N from NH4. Discharge-chemistry relationships indicate that changes in stream chemistry, except for NO3, are dominated by ion exchange reactions in the upper part of the soil profile.  相似文献   

9.
The model MAGIC (Model of Acidification of Groundwater In Catchments) has been applied to the Beacon Hill site, near Loughborough in Central England. This site is heavily impacted by wet and dry deposition of oxides of sulphur and nitrogen. The high acid inputs have caused soil acidification and acid stream waters. Long term simulations suggest that there has been a major decline in alkalinity and pH over the past 50 years. Despite recent reductions in deposition levels, soils and streams are predicted to continue to acidify in the future. For this heavily impacted site, deposition must be reduced by 80-90% to reverse the acidification trend and allow recovery of soil and stream waters.  相似文献   

10.
Acidic (acid neutralizing capacity [ANC] < or = 0) surface waters in the United States sampled in the National Surface Water Survey (NSWS) were classified into three groups according to their probable sources of acidity: (1) organic-dominated waters (organic anions > SO4*; (2) watershed sulphate-dominated waters (watershed sulphate sources > deposition sulphate sources); and (3) deposition-dominated waters (anion chemistry dominated by inputs of sulphate and nitrate derived from deposition). The classification approach is highly robust; therefore, it is a useful tool in segregating surface waters into chemical categories. An estimated 75% (881) of acidic lakes and 47% (2190) of acidic streams are dominated by acid anions from deposition and are probably acidic due to acidic deposition. In about a quarter of the acidic lakes and streams, organic acids were the dominant source of acidity. In the remaining 26% of the acidic streams, watershed sources of sulphate, mainly from acid mine drainage, were the dominant source of acidity.  相似文献   

11.
Hydrochemical changes between 1991 and 2001 were assessed based on two synoptic stream surveys from the 820-km2 region of the Slavkov Forest and surrounding area, western Czech Republic. Marked declines of sulfate, nitrate, chloride, calcium and magnesium in surface waters were compared with other areas of Europe and North America recovering from acidification. Declines of sulfate concentration in the Slavkov Forest (-30 microeq L(-1) yr(-1)) were more dramatic than declines reported from other sites. However, these dramatic declines of strong acid anions did not generate a widespread increase of stream water pH in the Slavkov Forest. Only the most acidic streams experienced a slight increase of pH by 0.5 unit. An unexpected decline of stream water pH occurred in slightly alkaline streams.  相似文献   

12.
Long-term changes in stream water chemistry in the upper Duddon catchment (southwest Lake District, UK) were investigated. Ten streams were sampled and analysed weekly during 1998, and the results compared with data for the early 1970s and 1986. The waters exhibited a range of pH, average values for 1998 being 5.04-7.04. For all the streams, the average pH in 1998 was greater than that during 1971-73. Statistical analysis was carried out, using the 1970s data to estimate the magnitude of inter-annual variation, and taking discharge into account on the basis of antecedent rainfall. The results showed that for two of the streams the pH increase was significant at the 2.5% level, while for a further three it was significant at the 10% level. Comparison of the 1998 concentrations of nitrate and non-marine sulphate with data obtained for five streams in 1973-74 showed that average nitrate concentration had increased from 11 to 20 microeq dm(-3) while that of non-marine sulphate had decreased from 94 to 50 microeq dm(-3). For four of the streams, comparisons were also made between the 1998 data and those for 1986. In three cases, pH in 1998 was generally higher, and Al generally lower, than the values for 1986, but in the fourth case little difference was evident. The present results support observations for five nearby standing waters, strengthening the evidence for a general reversal of acidification in the southwest part of Lake District, due to a decline in the deposition of pollutant sulphur.  相似文献   

13.
The role of organic acids on surface water acidity as well as their buffering during anthropogenic acidification and subsequent recovery was studied in a field experiment on a total organic carbon (TOC)-rich stream draining the Svartberget catchment in northern Sweden. H(2)SO(4) was added to the stream to increase SO(4)(2-) concentration by 90 microeq l(-1) for 30 h. About 60% of the added H(+) was buffered by protonation of organic acids, another 20% was buffered by base cations released from the surface of the stream channel and only ca. 20% of the added acid remained unbuffered. TOC concentrations (27 mg l(-1)), and site density of carboxylic groups--8.6 microeq (mg TOC)(-1)--remained stable during the experiment. Two models of organic acid dissociation (a triprotic model and a monoprotic pH-dependent pKa model) were fitted to the experimental results. These models explained the observed variations in organic anions, but the model parameters were quite different from those reported by studies in Northern America and Central Europe. This experiment had substantially more buffering effect of TOC between pH 4.4 and 5.3, which is an environmentally important pH range.  相似文献   

14.
Although situated on the western seaboard of the UK, and hence in the path of predominantly maritime air masses arriving directly from the Atlantic, Wales receives acidic deposition when winds are from the east. In conjunction with the highly base-poor rocks and soils found in the region, significant acidification of surface waters has occurred. Extensive afforestation in the Welsh uplands in the last 40 years has exacerbated acidification effects by elevating the loading of acidic anions received by catchments, thus increasing the concentrations of aluminium in watercourses. In considering possible remedial strategies, results of liming investigations from the Llyn Brianne Project in mid-Wales are presented. These studies have mainly involved liming small streams by a variety of catchment liming techniques. The most effective catchment treatments were those where finely ground CaCO3 was applied to the hydrological source areas at rates of up to 25 tonnes ha(-1). Possible drawbacks with such liming are discussed, although it is emphasized that liming is likely to be a component of any remedial strategy in the next 30 years until emissions reductions greater than those proposed in the forthcoming EC Directive are implemented.  相似文献   

15.
Streamwater was sampled at high flows from 14 catchments with different (0-78%) percentages of broadleaf woodland cover in acid-sensitive areas in the UK to investigate whether woodland cover affects streamwater acidification. Significant positive correlations were found between broadleaf woodland cover and streamwater NO3 and Al concentrations. Streamwater NO3 concentrations exceeded non-marine SO4 in three catchments with broadleaf woodland cover>or=50% indicating that NO3 was the principal excess acidifying ion in the catchments dominated by woodland. Comparison of calculated streamwater critical loads with acid deposition totals showed that 11 of the study catchments were not subject to acidification by acidic deposition. Critical loads were exceeded in three catchments, two of which were due to high NO3 concentrations in drainage from areas with large proportions of broadleaved woodland. The results suggest that the current risk assessment methodology should protect acid-sensitive catchments from potential acidification associated with broadleaf woodland expansion.  相似文献   

16.
The geochemical model MAGIC was applied to estimate streamwater and soil chemistry between 1851 and 2030 at the Lysina catchment, an acid-sensitive granitic catchment covered by planted Norway spruce monoculture in the western Czech Republic. The total deposition of sulfur to the catchment was 164 meq m(-2) in 1991, but had declined to 52 meq m(-2) by 2000. Although SO2 emissions in the region declined by 90% compared to the 1980s, acidification recovery was small within the period 1990-2000. Stream pH increased only slightly (from 3.92 to 4.07), although SO4 concentration declined sharply from 568 microeq l(-1) (1990) to 232 microeq l(-1) (2000). Organic acids played an important role in streamwater buffering. According to the MAGIC prediction using deposition measured in 1999-2000, streamwater pH will increase to 4.3 and soil base saturation will increase to 6.2% by 2030 (from 5.7% in 2002). Pre-industrial pH was estimated to be 5.5 and soil base saturation 24.7%. The loss of base cations (Ca, Mg, Na, K) was caused predominantly by atmospheric acidity, but intensive forestry was responsible for approximately one third of the net base cation loss via accumulation in harvested biomass. Severely damaged sites, under continued pressure from forestry, will not return to a good environmental status in the near future (if ever) when the acid deposition input is only partially reduced.  相似文献   

17.
Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10years with 35-140kg Nha(-2)y(-1) as NH(4)NO(3). Historic data suggests both grasslands have acidified over the past 50years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes.  相似文献   

18.
Long-term (1860–2010) catchment mass balance calculations rely on models and assumptions which are sources of uncertainty in acidification assessments. In this article, we report on an application of MAGIC to model acidification at the four Swedish IM forested catchments that have been subject to differing degrees of acidification stress. Uncertainties in the modeled mass balances were mainly associated with the deposition scenario and assumptions about sulfate adsorption and soil mass. Estimated base cation (BC) release rates (weathering) varied in a relatively narrow range of 47–62 or 42–47 meq m−2 year−1, depending on assumptions made about soil cation exchange capacity and base saturation. By varying aluminum solubility or introducing a dynamic weathering feedback that allowed BC release to increase at more acidic pHs, a systematic effect on predicted changes in acid neutralizing capacity (ΔANC ca. 10–41 μeq l−1) and pH (ca. ΔpH = 0.1–0.6) at all sites was observed. More robust projections of future changes in pH and ANC are dependent on reducing uncertainties in BC release rates, the timing, and extent of natural acidification through BC uptake by plants, temporal changes in soil element pools, and fluxes of Al between compartments.  相似文献   

19.
Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with < or =20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees.  相似文献   

20.
Episodic acidification is practically a ubiquitous process in streams and drainage lakes in Canada, Europe and the United States. Depressions of pH are often smaller in systems with low pre-episode pH levels. Studies on European surface waters have reported episodes most frequently with minimum pH levels below 4.5. In Canada and the United States, studies have also reported a number of systems that have had minimum pH levels below 4.5. In all areas, change in water flowpath during hydrological events is a major determinant of episode characteristics. Episodic acidification is also controlled by a combination of other natural and anthropogenic factors. Base cation decreases are an important contributor to episodes in circumneutral streams and lakes. Sulphate pulses are generally important contributors to episodic acidification in Europe and Canada. Nitrate pulses are generally more important to episodic acidification in the Northeast United States. Increases in organic acids contribute to episodes in some streams in all areas. The sea-salt effect is important in near-coastal streams and lakes. In Canada, Europe and the United States, acidic deposition has increased the severity (minimum pH reached) of episodes in some streams and lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号