首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
分段进水多级生物膜反应器脱氮效能影响因素研究   总被引:2,自引:1,他引:1  
采用分段进水多级生物膜反应器处理高氮低碳小城镇污水,考察负荷、溶解氧和温度对反应器脱氮效能的影响。实验结果表明:负荷、溶解氧和温度对反应器脱氮效能有显著影响。在水温为20~25℃,DO为5 mg/L,负荷为1 kgCOD/(m3.d),挂膜密度为30%,第1、3、6级分段进水,流量分配比为2∶2∶1的条件下,在反应器中可成功构建出高效同时硝化反硝化系统,出水COD、NH4+-N和TN浓度分别为33 mg/L、2.6 mg/L和29.4 mg/L,去除率分别为90.1%、96.0%和63.9%。当水温≤15℃时,硝化速率受温度的影响显著。  相似文献   

2.
Chowdhury N  Nakhla G  Zhu J 《Chemosphere》2008,71(5):807-815
A novel liquid-solid circulating fluidized bed bioreactor (LSCFB) configured with anoxic and aerobic columns and lava rock as the biofilm carrier was used to treat synthetic municipal wastewater. Four different empty bed contact times (EBCTs) of 0.82, 0.65, 0.55, and 0.44 h were examined to optimize nutrient removal capability of the system. The LSCFB demonstrated tertiary effluent quality organic and nitrogen removal efficiencies. Effluent characteristics of the LSCFB were soluble biological oxygen demand (SBOD)10 mg l(-1) and total nitrogen (TN)<10 mg l(-1) at organic loading rate (OLR) of 5.3 kg m(-3)d(-1) and nitrogen loading rate of 0.54 kg Nm(-3)d(-1). Remarkably low yields of 0.14, 0.17, 0.19, and 0.21 g VSS g(-1)COD were observed at OLR of 2.6, 3.2, 4.1 and 5.3 kg COD m(-3)d(-1), where increment of biomass growth and detachment rate were also experienced with increasing OLR. However the system demonstrated only 30% phosphorus removal, and mass balances along the anoxic and aerobic columns showed biological phosphorus removal in the system. Organic mass balance showed that approximately 40% of the influent COD was utilized in the anoxic column and the remaining COD was oxidized in the aerobic column. The system is very efficient in nitrification-denitrification, with more than 90% nitrification of ammonium and overall nitrogen removal in the LSCFB was 70+/-11% even at an EBCT of 0.44 h.  相似文献   

3.
采用南京江心洲污水处理厂的厌氧消化污泥作为厌氧折流板反应器(ABR)的接种污泥,研究室温(25±5)℃条件下ABR对邻苯二甲酸二丁酯(DBP)降解的运行特性。结果表明,ABR在室温、容积负荷为0.9-1.8 kg/(m3·d)条件下启动运行30 d可以达到运行稳定,其COD去除率在90%左右。在负荷提高阶段,当水力停留时间(HRT)为12 h,容积负荷为2.0-6.8 kg/(m3·d)时,反应器对COD平均去除率大于85%;当HRT为12 h,容积负荷6.8 kg/(m3·d)时,COD去除率达90.7%,DBP降解率达87.3%。  相似文献   

4.
Attempts were made in this study to examine the effectiveness of sequencing batch reactor (SBR) for the treatment of beverage industrial wastewater. The SBR was operated at three different organic loading rates (OLRs): 2, 1.7 and 1.1 kg COD/m3 d. Results of continuous long-term operation showed that by decreasing OLR from 2 to 1.7 kg COD/m3 day, the removal efficiency was increased from 95.5 to 99.3% for COD, from 95.3 to 98.1% for BOD and from 87 to 97.7% for TSS. While further decreasing of the OLR to 1.1 kg COD/m3 day, there is no significant adverse effect on organics removal. Also, residual total nitrogen (TN) concentration decreased by decreasing the OLR. However, increasing the OLRs exerted a slightly negative effect on the removal of total phosphorous. On the other hand, the experimental data indicated that the substrate utilization kinetic followed Monod's kinetics model approximately. The maximum specific substrate utilization rate (micro(max), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 2.94 d(-1), 15.22 mg/L, 0.2384 g VSS/g COD and 0.2019 h(-1), respectively.  相似文献   

5.
为了研究厌氧折流板反应器在常温下的启动情况,在22.5~30.2℃条件下,对不加填料的5隔室厌氧折流板反应器和加填料的4隔室复合式厌氧折流板反应器同步进行了启动实验。实验用水为高浓度淀粉废水,两反应器采用相同的启动策略,即梯度增加进水COD浓度与降低水力停留时间相结合的方式。两反应器有效容积均为47.8 L,启动初始负荷为0.6 kg COD/(m3.d),逐渐增加到10 kg COD/(m3.d)。实验表明,经过6个阶段87 d的运行,反应器启动完成,并成功培养出颗粒污泥,两反应器对COD的去除率都能达到85%以上。在启动过程中两反应器对COD的去除效率相近。  相似文献   

6.
生物量流失是EGSB反应器在高负荷状态下稳定运行面临的主要问题。利用实验室EGSB反应器在中温条件下处理高浓度葡萄糖废水,研究EGSB反应器在高负荷状态下的床层流态行为及其受影响因素。结果表明,在该反应器结构形式下,当有机负荷达到23-26 kg COD/(m3·d),水力上升流速在约3.0 m/h,气体上升流速在约1.3 m/h状态下运行时,床层易发生剧烈流化现象,并导致颗粒污泥的解体和流失。降低反应器回流比、减小反应器内水力上升流速,控制床层在悬浮状态时可以有效降低高负荷状态下生物量的流失,并取得了有机负荷46 kg COD/(m3·d),COD去除率97%以上的处理效果。  相似文献   

7.
采用膨胀颗粒污泥床(EGSB)反应器对城市生活垃圾焚烧厂产生的垃圾沥滤液进行处理。实验结果表明:中温条件下,当COD浓度为55 000 mg/L左右,有机容积负荷(OLR)为22.8 kg COD/(m3.d)时,EGSB对垃圾沥滤液具有较好的的处理效果,COD去除率可达94.2%。当进水COD为72 000 mg/L左右时,为保证反应器的稳定运行,OLR应降低至18.2 kg COD/(m3.d),此时COD去除率可以达到88%左右,出水COD平均为9 103 mg/L。垃圾沥滤液和EGSB处理出水均以小分子量有机物为主,其中<4 kDa的有机物分别占76.5%和74.4%。EGSB对整个分子量区间的溶解性有机物都有较好的处理效果,其中对大分子有机物的处理效率相对更高。  相似文献   

8.
外循环式UASB反应器处理槟榔废水   总被引:1,自引:0,他引:1  
在中温(35±2℃)条件下,利用外循环式UASB反应器处理中高有机浓度的槟榔加工废水,并着重探讨了水力停留时间(HRT)对厌氧消化的影响。研究表明,当反应器稳定运行,水力停留时间为1 d,进水COD浓度5 000 mg/L左右,容积负荷在2.53-5.25 kg COD/(m3·d)时,COD去除率在38%以上,出水COD〈3 000 mg/L,平均产气率为0.41 m3/kg COD;若水力停留时间延长至4 d,容积负荷为1.26-1.30 kg COD/(m3·d),COD去除率可以达到79%,出水COD〈1 200 mg/L,出水可生化性下降,BOD5/COD平均为0.28,实验取得了良好的处理效果,为利用厌氧技术处理槟榔加工废水提供了设计依据。  相似文献   

9.
通过自主设计的多级厌氧反应器系统来考察半连续处理螺旋霉素工业发酵菌渣的效果。该系统总反应体积为44L,由4个11L的升流式厌氧反应罐组成,罐体间采用串联方式连接。121d的连续运行周期分为3个阶段,各阶段的有机负荷率分别为1.27、1.82和2.73kgCOD/(m3·d)。全过程中主要监测了各级罐体的产气量和螺旋霉素的降解。结果表明,多级厌氧反应器系统启动初期会出现产气不稳定现象,经过2个月的运行之后系统达到稳定状态。在有机负荷达到2.73kgCOD/(m3·d)时,各级罐体仍能稳定运行,总产气的45%集中在1号罐。在系统启动初期,螺旋霉素不能被明显降解。运行约80d后,整个体系达到了快速降解螺旋霉素的状态,在2.73kgCOD/(m3·d)的有机负荷率下,螺旋霉素降解率达到97%,同时可溶性COD降解率也达到了90%。  相似文献   

10.
This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.  相似文献   

11.
研发了一种基于射流曝气的管式反应设备,考察了负荷和DO对反应器处理效能的影响。实验结果表明,在温度为15℃、DO 6.0 mg/L、有机负荷为1.0 kg COD/(m3.d)、氮负荷为0.30 kg TN/(m3.d)、HRT为8 h的条件下,管式反应器可使生活污水的COD、NH4+-N及TN分别从335 mg/L、105 mg/L及110 mg/L降至43 mg/L、14 mg/L及18 mg/L,去除率分别为87%、86%和83%。DO对反应器脱氮效能影响显著,DO为6 mg/L时,能构建出同步硝化反硝化系统,NH4+-N和TN的去除率分别为96.6%和86.7%。  相似文献   

12.
MBR工艺处理含50%海水的污水试验研究   总被引:1,自引:0,他引:1  
采用MBR工艺对含50%海水的污水生物处理进行了试验研究。实验条件为进水COD为300~2 600 mg/L,NH3-N为50~300 mg/L,pH值为6~9,混合液污泥浓度为7 000 mg/L,溶解氧浓度为2~4 mg/L,温度为20~25℃。试验结果表明,系统的最佳运行条件为:有机负荷<3.2 kg COD/(m3·d),氨氮负荷<0.35 kg/(m3·d),pH值在7.5~8.5之间,HRT>12 h。在此条件下,COD与氨氮的去除率可同时达到90%。高盐环境下微生物所分泌的大量胞外多聚物是造成MBR工艺处理含盐废水过程中膜污染的主要原因。  相似文献   

13.
This study was conducted to evaluate the performance of an innovative two-stage process, BIOCELL, that was developed to produce hydrogen (H2) and methane (CH4) from food waste on the basis of phase separation, reactor rotation mode, and sequential batch technique. The BIOCELL process consisted of four leaching-bed reactors for H2 recovery and post-treatment and a UASB reactor for CH4 recovery. The leaching-bed reactors were operated in a rotation mode with a 2-day interval between degradation stages. The sequential batch technique was useful to optimize environmental conditions during H2 fermentation. The BIOCELL process demonstrated that, at the high volatile solids (VS) loading rate of 11.9 kg/m3 x day, it could remove 72.5% of VS and convert VS(removed) to H2 (28.2%) and CH4 (69.9%) on a chemical oxygen demand (COD) basis in 8 days. H2 gas production rate was 3.63 m3/m3 x day, while CH4 gas production rate was 1.75 m3/m3 x day. The yield values of H2 and CH4 were 0.31 and 0.21 m3/kg VS(added), respectively. Moreover, the output from the post-treatment could be used as a soil amendment. The BIOCELL process proved to be stable, reliable, and effective in resource recovery as well as waste stabilization.  相似文献   

14.
耐酸厌氧消化污泥处理餐厨垃圾   总被引:1,自引:0,他引:1  
采用耐酸驯化的厌氧消化污泥处理餐厨垃圾,在酸性条件下(pH=4.5),对实验装置容积负荷从1.0kgVS/(m3·d)分9次逐级增加到5.0kgVS/(m3·d)的过程进行了跟踪监测,并较深入地研究了驯化污泥代谢活性和处理效果。实验结果表明,pH4.5的耐酸厌氧消化污泥,最佳投加负荷约为4.5kgVS/(m3·d),此负荷下容积产气率,CH4含量平均值均达最大,分别为1.68m3/(m3·d),75.0%。耐酸厌氧消化装置持续增料运行46d,产甲烷菌仍能保持较高的活性,其COD去除率范围为40.4%-75.0%,仍能保持pH7.2时处理效果的65.0%-91.8%,表明在低pH、低碱度下实现稳定的产甲烷过程是可行的。  相似文献   

15.
以啤酒厂废水处理厂UASB中的厌氧污泥为种泥,葡萄糖为基质,研究了厌氧序批式反应器产氢。控制反应器内pH为4.0~4.5,温度为(36±1)℃,水力停留时间为8 h,当进水葡萄糖浓度为4 000 mg/L,容积负荷为12 kg/(m3.d)条件下,该厌氧序批式反应器实现了连续高效厌氧产氢。生物气中的氢气含量约为48%~53%,基质产氢率为1.1 mol/mol葡萄糖,COD去除率为15%~25%,最大比产氢速率为84.5 mol/(kg VSS.d)。液相末端发酵产物中乙醇和乙酸的含量占液相末端发酵产物总量的80%以上,表明该反应器内进行的是乙醇型发酵厌氧产氢。厌氧序批式反应器完全可以实现连续高效厌氧产氢,比较适用于日处理量较小的高浓度含糖废水。  相似文献   

16.
The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria.  相似文献   

17.
内循环厌氧反应器的启动及影响因素   总被引:1,自引:0,他引:1  
采用内循环(IC)厌氧反应器,以生产淀粉和酒精的混合废水为处理对象,研究了中温条件下IC反应器的启动及影响因素。结果表明:接种厌氧消化污泥进行培养,逐渐提高进水有机负荷,运行105 d后,可实现IC反应器的启动;当进水COD浓度为11 500 mg/L,有机容积负荷为6.13 kg COD/(m3·d),COD去除率能到达95%左右;水力停留时间对启动过程没有影响,而温度和温度波动影响COD去除率;VFA比pH更能准确快速地反眏出反应器内部环境的变化,防止反应器的酸化;反应器内污泥实现颗粒化,并且具有良好的沉降性。  相似文献   

18.
Simultaneous nitrification-denitrification (SND) of municipal wastewater was investigated in a laboratory-scale membrane bioreactor (MBR) operated at two different hydraulic retention times (HRTs), 0.5 and 1 day, dissolved oxygen 3.0 to 0.5 mg/L, and solids retention time (SRT) between 28 and 120 days. The organic loading rate (OLR) (0.11 to 0.64 kg chemical oxygen demand [COD]/m3/d) and influent soluble COD (SCOD)/ total Kjeldahl nitrogen (TKN) ratio (5 to 19) were varied by the addition of glucose. The ammonia-nitrogen and TKN removals were over 97%, and total nitrogen removal was approximately 89% in the MBR. The maximum specific nitrification rates (98 mg N/d/g VSS) and specific denitrification rates (81 mg N/d/g VSS) occurred at an SCOD/TKN ratio of 9.1. The optimum conditions for maximum total nitrogen removal by SND in a single reactor MBR have been found to be low dissolved oxygen (< 0.6 mg/L) and high OLR (approximately 0.64 kg COD/m3/d) at an HRT of 0.5 day and SRT of approximately 85 days.  相似文献   

19.
The presence of a high concentration of sodium in wastewater is considered inhibitory for anaerobic biological treatment. This research was designed to investigate the potential use of halophilic methanogens and a mixed culture of halophilic methanogens and digester sludge, in anaerobic filters, for treatment of organic pollutants in high-saline wastewater at 35 degrees C. Data related to startup of the filters are presented. Both halophilic and mixed-culture anaerobic filters were able to operate at a sodium chloride concentration of 35 g/L, at organic loading rates (OLRs) of 6.2 and 5 kg chemical oxygen demand (COD)/m(3) x d, respectively. The COD removal efficiency was as high as 80%, and the systems were able to maintain a low volatile fatty acids concentration of 500 mg/L. No significant difference in COD removal was observed between the halophilic filter and the mixed-culture filter. Increasing the salt concentration to 37 g/L at an OLR of 3 kg/m(3) x d caused system failure.  相似文献   

20.
Methane production from the soluble fraction of distillers' dried grains with solubles, a co-product of ethanol production, was studied in 2-L anaerobic sequencing batch reactors (ASBRs) under 10 different operating conditions. Methane production and chemical oxygen demand (COD) removal were quantified for a wide range of operating parameters. Chemical oxygen demand removals of 64 to 95% were achieved at organic loading rates ranging from 1.5 to 22.2 g COD/L x d, solids retention times from 8 to 40 days, and food-to-microorganism ratios ranging from 0.4 to 1.9 g COD/g volatile suspended solids (VSS) x d. Biogas methane content varied from 61 to 74%, with 0.29 L CH4 produced/g COD removed. Roughly 56% of the influent COD and 84% of the COD removed in the ASBRs was converted to methane. Microbial yield (Y) and decay (b) constants were determined to be Y = 0.126 g VSS/g COD removed and b = 0.032 day(-1), respectively. Methane produced from co-products can reduce the costs and fossil-fuel consumption of ethanol manufacture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号