首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用吹扫捕集石英毛细管柱DB-624分离、GC/MS测定废水中丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯和丙烯酸丁酯。水样吹扫时,通过加硫酸钠盐大幅度降低检出限,最低检出浓度达到0.001 mg/L,加标回收率在83.3%-109%之间,变异系数在3.8%-6.9%之间。  相似文献   

2.
吹扫捕集-气相色谱法测定水中四氢呋喃   总被引:3,自引:0,他引:3  
建立了吹扫捕集-气相色谱测定水中四氢呋喃的方法,不用有机溶剂萃取和浓缩,减少了损失和对环境的污染,具有灵敏度高、检出限低、定量准确、操作简便等特点。当进样量为5 mL时,检出限可达到0.18μg/L级,相对标准偏差为0.9%-4.0%,加标回收率在77.2%-100.8%之间。  相似文献   

3.
采用吹扫捕集与快速气相色谱-飞行时间质谱联用法,通过质谱定性和各目标物的特征离子定量,建立了同时测定水中54种挥发性有机物(VOCs)的吹扫捕集-快速气相色谱-质谱的分析方法。结果表明,与常规方法相比,建立的吹扫捕集-快速气相色谱-质谱联用法在保证各目标物灵敏度和仅2组物质分辨率受影响的同时,分析时间由31 min缩短至13 min。该方法具有良好的重现性,除萘和1,2,3-三氯苯值为9.3%和8.7%外,其他目标物的重现性值皆小于5%,在线性范围1~200μg/L内皆具有大于0.99的良好相关度,各目标物的检出限值介于0.53~278 ng/L之间。  相似文献   

4.
吹扫 -捕集法为 2 0世纪 70年代中期推出的痕量挥发性有机化合物的富集方法 ,它具有简便、灵敏度高、富集率高、快速、精密、准确、不使用有机溶剂等特点。 2 0多年以来 ,吹扫 -捕集器和GC、GC/MS等仪器联用测定环境中痕量挥发性有机污染物 ,已获得令人满意的结果 ,因而吹扫 -捕集法将在有机污染分析中得到日益广泛的应用  相似文献   

5.
运用吹扫捕集/气相色谱/质谱(P&T/GC/MS)法对水体中54种常见的挥发性有机物(VOCs)进行了测定.结果表明,VOCs的色谱分离情况较好,平均加标回收率为88.5%~117.0%,相对标准偏差为0.71%~8.50%,准确度和精密度均符合有关分析测试的要求;方法检出限为0.10~0.61μg/L,远低于<地表水环境质量标准>(GB 3838-2002)、<生活饮用水卫生标准>(GB3838-2002)及国外相关标准的限值;54种VOCs的线性范围不同,低沸点的VOCs线性范围较宽,高沸点的VOCs的线性范围较窄,因此在分析VOCs样品配制标准工作曲线时,应注意不同沸点VOCs的线性范围.  相似文献   

6.
陈辉 《污染防治技术》2009,22(3):105-106
采用吹扫捕集、DB-624毛细管柱分离,气相色谱FID检测地表水和生活饮用水中的1,2-二氯乙烷,在0-530μg/L有较好的灵敏度和良好的线性关系,水样分析时,检测限为0.006 mg/L,加标回收率在91%-106%之间,平均相对标准偏差为3.3%。  相似文献   

7.
吹扫—捕集法在挥发性有机污染物分析中的应用   总被引:1,自引:0,他引:1  
吹扫-捕集法为20世纪70年代中期推出的痕量挥发性有机化合物的富集方法,它具有简便,灵敏度高,富集率高,快速,精密,准确,不使用有机溶剂等特点,20多年以来,吹扫-捕集器和GC、GC/MS等仪器联用测定环境中痕量挥发性有机污染物,已获得令人满意的结果,因而吹扫-捕集法将在有机污染分析中得到日益广泛的应用。  相似文献   

8.
将地表水中的2-甲基茚、1-甲基萘、1,4-二氢萘和4-甲基苯乙烯同时用吹扫捕集/气相色谱—质谱法进行测定。结果表明,当进样体积为20mL时,方法检出限为0.42~0.46μg/L,标准曲线相关系数大于0.999,方法精密度的相对标准偏差为1.1%~4.2%,加标回收率为80.0%~118.0%,均符合有关分析要求。该方法灵敏度高、分离效果良好,在实际样品测定特别是突发性环境污染应急事故监测中有较好的应用。  相似文献   

9.
采用吹扫捕集/气相色谱-质谱(GC-MS)法对饮用水中致嗅物质2-甲基异茨醇(2-MIB)和土臭素(GSM)进行测定。通过调整吹扫温度、吹扫时间、吹扫时捕集阱的温度、六通阀温度和传输管线温度,分析吹扫捕集条件对吹扫捕集效率的影响,并确定最佳吹扫捕集条件。2-MIB和GSM的方法检出限(MDL)分别为0.729 ng·L~(-1)和1.037 ng·L~(-1),方法定量限(MQL)分别为2.187 ng·L~(-1)和3.112 ng·L~(-1),平均加标回收率分别在92%~108%和88%~104%范围内,相对标准偏差分别小于6.5%和9.0%.在20~300 ng·L~(-1)的范围内,各异嗅化合物浓度与响应值的线性关系均良好,相关系数均大于0.999。该方法具有操作简便、检出限低,相关性良好、灵敏度高、重复性好等优点。  相似文献   

10.
重金属捕集剂XL9对含铜电镀废水处理效果的研究   总被引:2,自引:0,他引:2  
修莎  周勤  黄志勇 《环境工程学报》2009,3(10):1812-1815
研究了含有二硫代氨基甲酸盐的重金属捕集剂XL9对2种不同浓度的含铜电镀废水处理的影响因素和效果。研究结果表明,处理pH为2.05、含铜584.79 mg/L的废水,可无需调节pH直接投加10 mL捕集剂,搅拌反应3 min,静置后其上清液中所含铜离子为0.24 mg/L,去除率达到99.96%,完全达到国家排放标准(GB8978-1996)。在pH 3~10范围内,投加0.20 mL捕集剂,对含铜4.16 mg/L的废水的去除率可达到94.95%以上,其出水浓度小于0.5 mg/L,达到国家排放标准。  相似文献   

11.
水解酸化工艺处理印染废水的机理   总被引:5,自引:0,他引:5  
为了研究水解酸化工艺处理印染废水机理及其必要性,尝试用分子量及其分布和聚乙烯醇(PVA)降解程度作为论证指标,并综合后续好氧生物处理。提出以VFA产生和p H显著下降作为印染废水水解酸化的评判标准是不适用的;印染废水水解酸化的作用主要在水解阶段,COD虽没有明显降低,但分子量和PVA随着反应过程有显著下降;印染废水水解酸化可以大大降低好氧生物处理的难度,经过水解酸化的印染废水比未经水解酸化的印染废水好氧生物处理后COD去除率高40.2%,分子量下降率高66.2%。  相似文献   

12.
在筛选到的染料吸附脱色真菌和细菌的基础上 ,测定了温度和pH值对青霉G 1吸附和与细菌共培养脱色降解染料的影响。结果表明 ,16— 36℃下青霉G 1对艳紫KN B(C .I.Re .Vi.2 2 )和黄M 3RE(C .I.Re .Ye .14 5 )的吸附去除能力受温度影响不大 ,吸附 5h去除率在 97.1%— 98.7% ,而染料的脱色时间受温度影响较大 ,2 8— 36℃下脱色速度快 .青霉G 1对pH 3— 11染料水中染料的吸附去除率高 ,达 94 .9%— 97.8% ,对pH 13的吸附去除率低 ,仅为 5 5 .4 %和 5 6 .2 % ,从pH 5—13染料水中吸附染料的菌丝在与细菌共培养 5— 2 6h即完成了对染料的脱色 ,脱色速度较快  相似文献   

13.
印染废水处理工艺的实践与探讨   总被引:2,自引:0,他引:2  
结合海门地区印染企业的实际废水处理情况,分析了印染废水的基本状况,指出了处理过程中存在的问题,提出了印染废水处理的一些对策和建议。  相似文献   

14.
比较了5种真菌对染料水中染料的吸附去除和与脱色降解细菌L-1菌株(Enterobacter sp.)和L-2菌株(Pseudomonas sp.)对吸附染料的脱色降解能力;以吸附去除率和完全脱色时间综合评价,对筛选出的吸附性强并与细菌共培养时染料分子脱色降解速度快的绿曲霉为染料吸附菌,进一步测定了温度和pH值对绿曲霉吸附和与细菌共培养脱色降解活性黄M-3RE(C.I.Re.Ye.145)的影响.结果表明,温度对绿曲霉的吸附能力影响不大,在16~36 ℃下吸附5 h对活性黄M-3RE的去除率在95.1%~97.9%之间,但染料的完全脱色降解时间受温度影响较大,32~36 ℃下染料分子脱色降解较快.pH值对绿曲霉和细菌吸附、脱色降解能力均有一定影响.利用绿曲霉和细菌对印染行业中染料含量较高的染浴废水进行处理,绿曲霉可通过吸附作用快速去除废水中的染料分子,废水经绿曲霉处理5 h,色度、COD去除率分别为85.8%和56.1%,BOD/COD值由处理前的0.238提高到处理后的0.652,吸附在菌丝上的染料分子在细菌的共同作用下脱色降解.  相似文献   

15.
利用青霉菌P 1(Penicilliumsp )对 2种染浴废水中的染料进行吸附去除 ,研究结果表明 ,吸附处理 3h ,黑色和红色染浴废水色度基本被去除 ,去除率分别达 98 0 %和 74 5 % ,但去色处理后废水的CODCr值仍偏高。对去除色度的废水进一步用活性污泥进行深度处理 ,黑色和红色废水的CODCr去除率分别为 75 9%和 89 7%。青霉菌菌丝通过吸附作用从废水中抽提出的染料分子在有染料降解细菌L 1和L 2的降解池中脱色降解 ,菌丝吸附脱色能力得到再生。  相似文献   

16.
新型高效氧化偶合絮凝剂COF-I的研制及其应用研究   总被引:1,自引:0,他引:1  
以硫酸铝为主要原料 ,经过化学改性后 ,制得兼具氧化和絮凝为一体的新型、高效水处理药剂COF I ,并设计正交实验找出了药剂最佳组合配方 ,且对微污染水源水、城市污水及印染废水进行了强化处理试验研究。结果表明 ,最佳配方为复合比 1∶1、添加剂含量 1 2 5 %、稳定剂含量 0 3%、氧化成分含量 1 0 % ,在最佳配方和最佳工艺条件下 ,复合药剂COF I对微污染水源水、城市污水及印染废水均具有良好的处理效果  相似文献   

17.
石灰—硫酸亚铁法处理高浓度砷和氟酸性废水试验研究   总被引:7,自引:0,他引:7  
采用二级石灰-硫酸亚铁法处理砷和氟浓度分别高达110mg/L和650mg/L以上的酸性废水。当一、二级控制条件分别为pH9.5和9.0、Fe/As比为2.5和15时,一级砷和氟去除率分别可达99.5%和94%,二级出口砷和氟残余浓度分别可低至0.1mg/L和13.8mg/L,Cu、Zn和Pb等重金属离子均达检不出水平。  相似文献   

18.
接种比对碱超声波耦合溶胞污泥水解酸化的影响   总被引:2,自引:1,他引:1  
以城市污水生物处理过程中的剩余污泥减量化为研究背景,通过实验研究了经碱超声波耦合溶胞后的剩余污泥在不同接种比下水解酸化的效果,分析了污泥上清液中pH、SCOD、VFAs、NH4+-N和PO34--P等参数随时间的变化趋势。结果表明,溶胞污泥经过72 h的水解酸化反应,20%接种比下的水解酸化COD溶出率和VFAs增长率最高,分别为75.5%和177%。蛋白质水解程度为16.9%,也高于50%和70%两组接种比。此外,COD、NH4+-N和PO34--P等主要溶出物均在12 h后达到基本稳定状态。  相似文献   

19.
固定化藻菌去除海水冲厕污水中氮磷的实验研究   总被引:1,自引:0,他引:1  
采用海藻酸钠凝胶包埋固定小球藻和活性污泥,对冲厕海水污水(模拟)中的氮磷污染物进行去除实验。结果表明,在藻菌比为2:1,固定化藻菌对氮磷的去除率分别达到95.5%和92.2%。在N/P为10时,固定化藻菌对冲厕海水污水中氮磷的去除效果最好。25~30℃时固定化藻菌对氨氮和磷的去除率最好,温度过高时藻和细菌细胞的活性受到抑制。固定化藻菌体系处理冲厕海水污水的较佳pH范围在6.5~8.5之间。  相似文献   

20.
Goal, Scope and Background Atmospheric sampling (gas and particles) of 5 phenols (phenol, m-cresol, p-cresol, o-cresol, pentachlorophenol) and 15 nitrophenols (3-methyl-2-nitrophenol, 3-nitrophenol, 4-methyl-2-nitrophenol, 5-methyl-2-nitrophenol, 2-methyl-3nitrophenol, 3-methyl-4-nitrophenol, 2,6-dinitrophenol, bromoxynil, 2,5-dinitrophenol, 2,6-dinitro-p-cresol, 2,4-dinitrophenol, ioxynil, DNOC, 3,4-dinitrophenol, dinoseb) on XAD-2 resin (20 gr) and glass fibre filters, respectively, were performed in 2002 by using 'Digitel DA80' high volume samplers. These measurements were undertaken in order to show spatial and geographical variations of concentrations and the role of traffic in the emissions of these compounds to the atmosphere. Methods Sampling were performed in Strasbourg (eastern France), in its vicinity (Schiltigheim) and in Erstein. Sites were chosen to be representative of urban (Strasbourg), suburban (Schiltigheim) and rural (Erstein) conditions. Field campaigns were undertaken simultaneously in urban and suburban sites during all the seasons during 4 hours at a flow rate of 60 m3.h-1, which gives a total of 240 m3 of air per sample. Period of sampling varied between 06h00 to 10h00, 11h00 to 15h00 and 18h00 to 22h00 in order to evaluate a variation of concentration during automobile traffic between urban, suburban and rural areas. Gas and particle samples were separately Soxhlet extracted for 12 h with a mixture of CH2Cl2 / n-hexane (50:50 v/v), concentrated to about 1 mL with a rotary evaporated and finally dried under nitrogen. Dry extracts were dissolved in 1 mL of CH3CN. Before analysis, extracts were sylilated by using MTBSTFA. Analysis was performed by GC/MSD in the SIM mode. Results and Discussion Partitioning of phenolic compounds between gas and particle phases seems to be mainly correlated with vapour pressure. Among phenolic compounds analysed, phenol, p-cresol, pentachlorophenol and 2.4-dinitrophenol were detected in all samples and emissions from traffic seems to be the major source for the presence of these compounds to the atmosphere. No increase of concentrations in autumn tend to confirm this hypothesis since, with the use of domestic heating in colder months, increases of PAHs concentrations were observed and these compounds are known to be emitted by all combustion processes. Pentachlorophenol is a special case since this molecule is only used as wood preservative. Its presence in all atmospheric samples, whatever the locations and the period of time is the consequence of its persistence. Conclusions and Perspectives These measurements demonstrate that phenols and nitrophenols are emitted to the atmosphere and further measurements, in order to confirm their sources, their behaviour and their potential impact to the air quality and to human health should be undertaken especially since the literature collected is relatively old. Concentrations of pentachlorophenol measured are very low and, due to its toxicity, further investigations should be undertaken. - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号