首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 994 毫秒
1.
Abstract

The adsorption–desorption and leaching of flucetosulfuron, a sulfonylurea herbicide, was investigated in three Indian soils. Freundlich adsorption isotherm described the sorption mechanism of herbicide with adsorption coefficients (Kf) ranging from 17.13 to 27.99 and followed the order: Clayey loam?>?Loam?>?Sandy loam. The Kf showed positive correlation with organic carbon (OC) (r?=?0.910) and clay content (r?=?0.746); but, negative correlation with soil pH (r = ?0.635). The adsorption isotherms were S-type suggesting that herbicide adsorption was concentration dependent and increased with increase in concentration. Desorption followed the sequence: sandy loam?>?clayey loam?>?loam . Hysteresis (H) was observed in all the three soils with H?<?1. Leaching of flucetosulfuron correlated positively with the soil pH; but, negatively with the OC content. Sandy loam soil (OC- 0.40%, pH ?7.25) registered lowest adsorption and highest leaching of flucetosulfuron while lowest leaching was found in the loam soil (pH ? 7.89, OC ? 0.65%). The leaching losses of herbicide increased with increase in the rainfall intensity. This study suggested that the soil OC content, pH and clay content played important roles in deciding the adsorption–desorption and leaching behavior of flucetosulfuron in soils.  相似文献   

2.
Leaching of acidic herbicides (2,4-D, flumetsulam, and sulfentrazone) in soils was estimated by comparing the original and modified AF (Attenuation Factor) models for multi-layered soils (AFi). The original AFi model was modified to include the concept of pH-dependence for Kd (sorption coefficient) based on pesticide dissociation and changes in the accessibility of soil organic functional groups able to interact with the pesticide. The original and modified models, considering soil and herbicide properties, were applied to assess the leaching potential of selected herbicides in three Brazilian soils. The pH-dependent Kd values estimated for all three herbicides were observed to be always higher than pH-independent Kd values calculated using average Koc data, and therefore the original AFi model overestimated the overall leaching potential for the soils studied.  相似文献   

3.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

4.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine~ amitrole~ simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log Kow) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

5.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with K(f) (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The K(f) for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   

6.
To assess transport and ecotoxicological risks of metals, such as cadmium (Cd) in soils, models are needed for partitioning and speciation. We derived regression-based “partition-relations” based on adsorption and desorption experiments for main Australian soil types. First, batch adsorption experiments were carried out over a realistic range of dissolved Cd concentrations in agricultural soils in Australia. Results showed linear sorption relationships, implying the adequacy of using Kd values to describe partitioning. Desorption measurements were then carried out to assess in-situ Kd values and relate these to soil properties The best transfer functions for solid-solution partitioning were found for Kd values relating total dissolved Cd concentration to total soil Cd concentrations, accounting for the variation in pH, SOM contents and DOC concentrations. Model predictions compared well with measurements of an independent data set, but there was a tendency to underestimate dissolved Cd concentrations of highly polluted soils.  相似文献   

7.
Vertical variation in sorption and mineralization potential of mecoprop (MCPP), isoproturon and acetochlor were investigated at low concentrations (μg-range) at the cm-scale in unsaturated sub-surface limestone samples and saturated sandy aquifer samples from an agricultural catchment in Brévilles, France. From two intact core drills, four heterogenic limestone sections were collected from 4.50 to 26.40m below surface (mbs) and divided into 12 sub-samples of 8-25cm length, and one sandy aquifer section from 19.20 to 19.53m depth divided into 7 sub-samples of 4-5cm length. In the sandy aquifer section acetochlor and isoproturon sorption increased substantially with depth; in average 78% (acetochlor) and 61% (isoproturon) per 5cm. Also the number of acetochlor and isoproturon degraders (most-probable-number) was higher in the bottom half of the aquifer section (93->16000/g) than in the upper half (4-71/g). One 50cm long limestone section with a distinct shift in color showed a clear shift in mineralization, number of degraders and sorption: In the two brown, uppermost samples, up to 31% mecoprop and up to 9% isoproturon was mineralized during 231 days, the numbers of mecoprop and isoproturon degraders were 1300 to >16000/g, and the sorption of both isoproturon and acetochlor was more than three times higher, compared to the two deeper, grayish samples just below where mineralization (≤4%) and numbers of degraders (1-520/g) were low for all three herbicides. In both unsaturated limestone and sandy aquifer, variations and even distinct shifts in both mineralization, number of specific degraders and sorption were seen within just 4-15cm of vertical distance. A simple conceptual model of herbicides leaching to groundwater through a 10m unsaturated limestone was established, and calculations showed that a 30cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total thickness of layers of 1m would substantially increase natural attenuation.  相似文献   

8.
The fumigant 1,3-dichloropropene (1,3-D) is considered a major replacement to methyl bromide, which is to be phased out of use in the United States by 2005. The main purpose of this study was to evaluate soil-water partitioning of 1,3-D in two California agricultural soils (Salinas clay loam and Arlington sandy loam). The partition coefficients (Kd and Kf) were determined by directly measuring the concentration of 1,3-D in the solid phase (Cs) and aqueous phase (Cw) after batch equilibration. In the Salinas clay loam, the Kf of cis-1,3-D in adsorption and desorption isotherms was 0.47 and 0.54, respectively, with respective values of 0.39 and 0.49 for trans-1,3-D. This slight hysteric effect suggests that a different range of forces are involved in the adsorption and desorption process. Since n was near unity in the Freundlich equation, the Freundlich isotherms can also be approximated using the liner isotherm. At 25 degrees C, the Kd of the 1,3-D isomers in both soils ranged from 0.46 to 0.56, and the Koc (organic matter partition coefficient) ranged from 58 to 70. The relatively low Kd values and a Koc that falls within the range of 50-150, suggests that 1,3-D is weakly sorbed and highly mobile in these soils. Understanding the sorption behavior of 1,3-D in soil is important when developing fumigation practices to reduce the movement of 1,3-D to the air and groundwater.  相似文献   

9.
Sorption of ametryn and imazethapyr in 25 soils from Pakistan and Australia was investigated using the batch method. The soils varied widely in their intrinsic capacities to sorb these herbicides as shown by the sorption coefficients, Kd, which ranged from 0.59 to 47.6 for ametryn and 0.02 to 6.94 for imazethapyr. Generally the alkaline soils of Pakistan had much lower Kd values of both herbicides than the soils of Australia. Both soil pH and soil organic carbon (SOC) were correlated significantly with the sorption of ametryn, whereas only soil pH was strongly correlated with imazethapyr sorption. No correlation was found between Kd values of the herbicides and the clay contents of the soils. Multiple regression analysis showed that Kd values were better correlated (r2=0.94 and 0.89 for ametryn and imazethapyr, respectively) if SOC and pH were simultaneously taken into account. The study indicated that sorption of these herbicides in the alkaline soils of Pakistan was low and consequently there is considerable risk of groundwater contamination.  相似文献   

10.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with Kf (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The Kf for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   

11.
The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium < fluometuron < prometryn < or = diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

12.
Carbendazim sorption-desorption in Vietnamese soils   总被引:2,自引:0,他引:2  
Four Vietnamese soils (denoted AG, CT, ST and TG) which differed with respect to pH (pH 2.9-5.4), clay (17-50%) and organic matter (0.3-9.8%) content, were selected for sorption and desorption studies of carbendazim using the batch equilibration technique. Sorption increased with increasing organic carbon (OC) and clay content. Kd values for carbendazim sorption on AG, CT, ST, TG soils at initial concentration of 20 microg/g were 12.5, 127, 8.1 and 9.6 ml/g, respectively. The OC partition coefficients (Koc) for AG, CT, ST and TG were 1140, 1300, 2700 and 960 ml/g, respectively. Carbendazim was strongly sorbed and the binding was less reversible in the acid sulfate soil (CT), than in the other soils. The CT soil had both the highest OC content (9.8%) and the highest clay content (49.8%). The influence of pH on carbendazim sorption was studied in the ST and CT soils. Sorption of carbendazim by the sandy ST soil (OC 0.3%; clay content 26.3%) increased as the pH decreased, while sorption of carbendazim by the CT soil decreased as pH decreased.  相似文献   

13.
This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption-desorption processes. Four soils from Melozal (35° 43' S; 71° 41' W), Parral (36° 08' S; 71° 52' W), San Carlos (36° 24' S; 71° 57' W), and Panimavida (35° 44' S; 71° 24' W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g?1) and were related to soil pH. Molinate showed K(d) values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g?1 and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its K(d) values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g?1. MCPA K(d) ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g?1, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.  相似文献   

14.
Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron > isoproturon > chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a mechanistic explanation of the changes in leaching with ageing of residues.  相似文献   

15.
This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption–desorption processes. Four soils from Melozal (35° 43′ S; 71° 41′ W), Parral (36° 08′ S; 71° 52′ W), San Carlos (36° 24′ S; 71° 57′ W), and Panimavida (35° 44′ S; 71° 24′ W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g?1) and were related to soil pH. Molinate showed Kd values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g?1and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its Kd values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g?1. MCPA Kd ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g?1, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.  相似文献   

16.
Studies on the adsorption and desorption of MCPA (4-chloro-2-methylophenoxyacetic acid) were performed in soil horizons of three representative Polish agricultural soils. The Hyperdystric Arenosol, the Haplic Luvisol and the Hypereutric Cambisol were investigated in laboratory batch experiments. Initially, both the adsorption and desorption proceeded rapidly, and either the equilibrium was reached after approximately 30 min or the process slowed down and continued at a slow rate. In the latter case, the equilibrium was reached after 8 hours. Data on the adsorption/desorption kinetics fitted well to the two-site kinetic model. The measured sorption and desorption isotherms were of L-type. The sorption distribution coefficients (K(ads) (d)) were in the range of 0.75--0.97 for Ap soil horizons and significantly lower in deeper soil layers. The corresponding desorption coefficients (K(des) (d)) were higher and ranged from 1.02 to 2.01. Both the adsorption and desorption of MCPA in all soil horizons was strongly and negatively related to soil pH. It appears that hydrophobic sorption plays a dominant role in the MCPA retention in topsoils whereas hydrophilic sorption of MCPA anions is the dominant adsorption mechanism in subsoils.  相似文献   

17.
Rabølle M  Spliid NH 《Chemosphere》2000,40(7):715-722
Laboratory studies were conducted to characterise four different antibiotic compounds with regard to sorption and mobility in various soil types. Distribution coefficients (Kd values) determined by a batch equilibrium method varied between 0.5 and 0.7 for metronidazole, 0.7 and 1.7 for olaquindox and 8 and 128 for tylosin. Tylosin sorption seems to correlate positively with the soil clay content. No other significant interactions between soil characteristics and sorption were observed. Oxytetracycline was particularly strongly sorbed in all soils investigated, with Kd values between 417 in sand soil and 1026 in sandy loam, and no significant desorption was observed. Soil column leaching experiments indicated large differences in the mobility of the four antibiotic substances, corresponding to their respective sorption capabilities. For the weakly adsorbed substances metronidazole and olaquindox the total amounts added were recovered in the leachate of both sandy loam and sand soils. For the strongly adsorbed oxytetracyline and tylosin nothing was detected in the leachate of any of the soil types, indicating a much lower mobility. Results from defractionation and extraction of the columns (30 cm length) showed that 60-80% of the tylosin added had been leached to a depth of 5 cm in the sandy loam soil and 25 cm in the sand soil.  相似文献   

18.
The herbicide imazaquin has both an acid and a basic ionizable groups, and its sorption depends upon the pH, the electric potential (psi0), and the oxide and the organic carbon (OC) contents of the soil. Sorption and extraction experiments using 14C-imazaquin were performed in surface and subsurface samples of two acric oxisols (an anionic "rhodic" acrudox and an anionic "xanthic" acrudox) and one non-acric alfisol (a rhodic kandiudalf), treated at four different pH values. Imazaquin showed low to moderate sorption to the soils. Sorption decreased and aqueous extraction increased as pH increased. Up to pH 5.8, sorption was higher in subsurface than in surface layers of the acric soils, due to the positive balance of charges resulted from the high Fe and Al oxide and the low OC contents. It favored electrostatic interactions with anionic molecules of imazaquin. For the subsurface samples of these highly weathered soils, where psi0 was positive and OC was low, it was not possible to predict sorption just by considering imazaquin speciation and its hydrophobic partition to the organic domains of the soil. Moreover, if Koc measured for thesurface samples were assumed to represent the whole profile in predictive models for leaching potential, then it would result in underestimation of sorption potential in subsurface, and consequently result in overestimation of the leaching potential.  相似文献   

19.
The sorption-desorption of metolachlor [2-chloro-N-(ethyl-6-methyl phenyl)-N-(2-methoxy-1-methyl ethyl) acetamide], isoproturon [3-(4-isopropyl phenyl)-1,1-dimethyl urea] and terbuthylazine [N6-tert butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] herbicides was studied in two German soils at 1:10 soil to water ratio by batch method. Equilibrium of herbicides between soil and water (0.01 M CaCl2) was attained in 2 h. Sorption data fitted very well to Freundlich equation, represented by very high correlation coefficient (r2 > 0.934). Comparison of Freundlich K values indicated that sorption of all the three herbicides was most pronounced in soil having higher organic carbon content. Koc values were as expected nearly identical for each herbicide in the two soils. The Freundlich constant (1/n) was about 1 for metolachlor and less than 1 for terbuthylazine and isoproturon indicating a L-type of sorption isotherms. Desorption of all the three herbicides showed hysteresis. Nearly equal amounts of metolachlor, isoproturon and terbuthylazine were desorbed from both soils. There was a good correlation between Koc and solubility.  相似文献   

20.
Diffusion-retarded partitioning of pesticides with aggregated soils results in a time-dependent partition coefficient (Kd') which is different at equilibrium from the partition coefficient derived from conventional 24-h batch studies (Kd) measured on dispersed soil. An experiment was undertaken to determine the importance of Kd' for the prediction of pesticide concentrations in solutions bathing artificial soil aggregates and to determine whether diffusion theory could accurately predict the concentrations. Two clay soils were mixed with polyacrylamide to create artificial aggregates of 0.8, 1.4 and 1.7 cm diameter when dry. After saturation, the aggregates were immersed in solutions containing isoproturon or a mixture of isoproturon, chlorotoluron and triasulfuron. The decline with time of the pesticide concentrations in the bathing solution was monitored and the results were compared with predictions from a diffusion-based model. The effective diffusion coefficients of the compounds were obtained by either fitting the non-linear diffusion model to the data (D(ef)) or by independent calculations based on the properties of the compounds and of the aggregates (D(ec)). The diffusion model was able to predict the temporal variation in pesticide concentrations in the bathing solution reasonably well whether D(ef) or D(ec) values were used. However, equilibrium concentrations in solution were sometimes overestimated due to increased sorption with time at the particle scale. Overall, the ratio between D(ef) and D(ec) ranged from 0.23 to 0.95 which was a reasonable variation when compared to the range of aggregate sizes used in the experiments and of the Kd values of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号