首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.  相似文献   

2.

Sequential coupling of high-density luffa sponge (HDLS) immobilized microorganism and permeable reactive barriers (IM Bio-PRBs) was superior to intimate coupling of free microorganism and permeable reactive barriers (FM Bio-PRBs) for remediation of 1,1,1-trichloroethane contaminated groundwater. IM Bio-PRBs had much better performance to removal 1,1,1-trichloroethane (1,1,1-TCA) and prevent the transport of 1,1,1-TCA and inorganic ions (NO3?, PO43?, and SO42?). The majority of them were prevented and accumulated in upgradient of IM Bio-PRBs. 1,1,1-TCA and inorganic ions in there contributed to the much faster growth of microorganism in upgradient aquifer. Therefore, the removal of 1,1,1-TCA and consumption of inorganic ions in upgradient of Bio-PRBs played a constructive role in reducing the processing load of following zero-valent iron (ZVI) PRBs and the negative effect of free microorganism cells (biological clogging) and inorganic ions (chemical clogging) on Bio-PRB permeability. In addition, IM Bio-PRBs were more conducive to accelerate the removal of 1,1,1-TCA in long-term remediation and 1,1,1-TCA residual concentration significantly lower than the safety standard of 0.2 mg L?1. The change of terminal by-products of 1,1,1-TCA contaminated groundwater in Bio-PRBs showed that 1,1,1-TCA could be effectively de-chlorinated and mineralized in Bio-PRBs. The reductant H2S (prolong the service life of ZVI-PRBs) was much more produced and utilized in IM Bio-PRBs. Taken together, sequentially coupled IM Bio-PRBs had a better overall performance, and its service life could be prolonged. It was a different design and idea to update conventional PRB remediation technology and theory.

  相似文献   

3.
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl?, HCO3 ?, SO4 2?, and NO3 ? anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L?1 and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4–8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl? and SO4 2? anions had negligible effects. HCO3 ? anions had a accelerative effect on 1,1,1-TCA removal, and both NO3 ? and HA had inhibitory effects. A Cl? mass balance showed that the amount of Cl? ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.  相似文献   

4.
Granular iron is used in reactive permeable barriers for the reductive treatment of organic and inorganic groundwater contaminants. The technology is well established, however, its long-term performance and the importance of the groundwater composition are not yet well understood. Here, the influence of chloride, nitrate, silicate, and Aldrich humic acid on the reactivity of Master Builder iron was studied under anoxic conditions using small packed columns and 2-nitrotoluene (2-NT) as a model contaminant. After initially complete reduction of 2-NT to 2-aminotoluene (2-AT) in the column, possibly under mass-transfer controlled conditions, the reactivity of the iron was found to decrease substantially. In the presence of chloride, this decrease was slowed while exposure to silicate resulted in a very quick loss of iron reactivity. Nitrate was found to interfere strongly with the effect of chloride. These observations are interpreted in terms of corrosion inhibition/promotion and competition. Our results suggest that reactive barrier performance may be strongly affected by the composition of the treated groundwater.  相似文献   

5.
Permeable walls of granular iron are a new technology developed for the treatment of groundwater contaminated with dissolved chlorinated solvents. Degradation ofthe chlorinated solvents involves a charge transfer process in which they are reductively dechlorinated, and the iron is oxidized. The iron used in the walls is an impure commercial material that is covered with a passive layer of Fe2O3, formed as a result of a high-temperature oxidation process used in the production of iron. Understanding the behaviour of this layer upon contact with solution is important, because Fe2O3 inhibits mechanisms involved in contaminant reduction, including electron transfer and catalytic hydrogenation. Using a glass column specially designed to allow for in situ Raman spectroscopic and open circuit potential measurements, the passive layer of Fe2O3 was observed to be largely removed from the commercial product, Connelly iron, upon contact with Millipore water and with a solution of Millipore water containing 1.5 mg/l trichloroethylene (TCE). It has been previously shown that Fe2O3 is removed from iron surfaces upon contact with solution by an autoreduction reaction; however, prior to this work, the reaction has not been shown to occur on the impure commercial iron products used in permeable granular iron walls. The rate of removal was sufficiently rapid such that the initial presence of Fe2O3 at the iron surface would have no consequence with respect to the performance of an in situ wall. Subsequent to the removal of Fe2O3 layer, magnetite and green rust formed at the iron surface as a result of corrosion in both the Millipore water and the solution containing TCE. The formation of these two species, rather than higher valency iron oxides and oxyhydroxides, is significant for the technology. The former can interfere with contaminant degradation because they inhibit electron transfer and catalytic hydrogenation. Magnetite and green rust, in contrast, will not inhibit the mechanisms involved in contaminant reduction, and hence their formation is beneficial to the long-term performance of the iron material.  相似文献   

6.
A field study was performed to evaluate the potential for in-situ aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) through bioaugmentation with a butane enrichment culture containing predominantly two Rhodococcus sp. strains named 179BP and 183BP that could cometabolize 1,1,1-TCA and 1,1-dicholoroethene (1,1-DCE). Batch tests indicated that 1,1-DCE was more rapidly transformed than 1,1,1-TCA by both strains with 183BP being the most effective organism. This second in a series of bioaugmentation field studies was conducted in the saturated zone at the Moffett Field In Situ Test Facility in California. In the previous test, bioaugmentation with an enrichment culture containing the 183BP strain achieved short term in situ treatment of 1,1-DCE, 1,1,1-TCA, and 1,1-dichloroethane (1,1-DCA). However, transformation activity towards 1,1,1-TCA was lost over the course of the study. The goal of this second study was to determine if more effective and long-term treatment of 1,1,1-TCA could be achieved through bioaugmentation with a highly enriched culture containing 179BP and 183BP strains. Upon bioaugmentation and continuous addition of butane and dissolved oxygen and or hydrogen peroxide as sources of dissolved oxygen, about 70% removal of 1,1,1-TCA was initially achieved. 1,1-DCE that was present as a trace contaminant was also effectively removed ( 80%). No removal of 1,1,1-TCA resulted in a control test leg that was not bioaugmented, although butane and oxygen consumption by the indigenous populations was similar to that in the bioaugmented test leg. However, with prolonged treatment, removal of 1,1,1-TCA in the bioaugmented leg decreased to about 50 to 60%. Hydrogen pexoxide (H2O2) injection increased dissolved oxygen concentration, thus permitting more butane addition into the test zone, but more effective 1,1,1-TCA treatment did not result. The results showed bioaugmentation with the enrichment cultures was effective in enhancing the cometabolic treatment of 1,1,1-TCA and low concentrations of 1,1-DCE over the entire period of the 50-day test. Compared to the first season of testing, cometabolic treatment of 1,1,1-TCA was not lost. The better performance achieved in the second season of testing may be attributed to less 1,1-DCE transformation product toxicity, more effective addition of butane, and bioaugmentation with the highly enriched dual culture.  相似文献   

7.
Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY   总被引:1,自引:0,他引:1  
Shin HY  Singhal N  Park JW 《Chemosphere》2007,68(6):1129-1134
Zero valent iron (ZVI), the primary reactive material in several permeable reactive barriers, is often oxidized to ferrous or ferric iron, resulting in decreased reactivity with time. Iron reducing bacteria can reconvert the ferric iron to its ferrous form, prolonging the reduction of chlorinated organic contaminants. In this study, the reduction of Fe(II,III) oxide and Fe(III) oxide by a strain of iron reducing bacteria of the group Shewanella alga BrY(S. alga BrY) was observed in both aqueous and solid phases. S. alga BrY preferentially reduced dissolved ferric iron over the solid ferric iron. In the presence of iron oxide the Fe(II) ions reduced by S. alga BrY efficiently reduced trichloroethylene (TCE). On the other hand, Fe(II) produced by S. alga BrY covered the reactive surfaces of ZVI iron filings and inhibited the reduction of TCE by ZVI. The formation of precipitates on the iron oxide or Fe0 surface was confirmed by scanning electron microscopy. The results suggest that iron-reducing bacteria in the oxidized Fe0 barriers can enhance the removal rate of chlorinated organic compounds and influence on the long-term performance of Fe0 reactive barriers.  相似文献   

8.
Liang C  Lee IL  Hsu IY  Liang CP  Lin YL 《Chemosphere》2008,70(3):426-435
In situ chemical oxidation with persulfate anion (S2O82*) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). An accelerated reaction using S2O82* to destroy TCE can be achieved via chemical activation with ferrous ion to generate sulfate radicals (SO4*)(E degrees =2.6 V). The column study presented here simulates persulfate oxidation of TCE in porous media (glass beads and a sandy soil). Initial experiments were conducted to investigate persulfate transport in the absence of TCE in the column. The persulfate flushing exhibited a longer residence time and revealed a moderate persulfate interaction with soils. In TCE treatment experiments, the results indicate that the water or persulfate solution would push dissolved TCE from the column. Therefore, the effluent TCE concentration gradually increased to a maximum when about one pore volume was replaced with the flushing solution in the column. The presence of Fe2+ concentration within the column caused a quick drop in effluent TCE concentration and more TCE degradation was observed. When a TCE solution was flushing through the soil column, breakthrough of TCE concentration in the effluent was relatively slow. In contrast, when the soil column was flushed with a mixed solution of persulfate and TCE, persulfate appeared to preferentially oxidize soil oxidizable matter rather than TCE during transport. Hence, persulfate oxidation of soil organics may possibly reduce the interaction between TCE and soil (e.g., adsorption) and facilitate the transport of TCE through soil columns resulting in faster breakthrough.  相似文献   

9.
In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.  相似文献   

10.
Jung B  Batchelor B 《Chemosphere》2007,68(7):1254-1261
This study examines the effect of iron-bearing phyllosilicates on dechlorination rates of chlorinated aliphatic hydrocarbons (CAHs) in iron-based degradative solidification/stabilization (DS/S-Fe(II)). Laboratory batch experiments were conducted to evaluate dechlorination rates of 1,1,1-trichloroethane (1,1,1-TCA) in a mixture solution of Fe(II), cement and three different iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite). A first-order rate model was generally used to describe the dechlorination kinetics and the rate constants were dependent on soil mineral type (biotite, vermiculite, and montmorillonite), Fe(II) dose, and the mass ratio of cement to soil mineral. The pseudo-first-order rate constant for montmorillonite was lower than that for biotite and vermiculite by factors of 11-27 when the mass ratio of cement to phyllosilicates was fixed at one. The presence of biotite and vermiculite increase and the presence of montmorillonite decrease the degradation rate that would be observed in their absence. The effect of cement/mineral ratio on rate constants with three different soil minerals indicates that biotite was more reactive than the other two phyllosilicates. This may be due to high accessible natural Fe(II) content in biotite. Montmorillonite appears to inhibit dechlorination by either inactivating Fe(II) by ion exchange or by physically blocking active sites on cement hydration products.  相似文献   

11.
An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (>99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier.  相似文献   

12.
Long-term column experiments were conducted under different geochemical conditions to estimate the longevity of Fe 0 permeable reactive barriers (PRBs) treating hexavalent chromium (Cr(VI)). Secondary carbonate minerals were precipitated, and their effects on the performance, such as differences in the mechanism for Cr removal and the changes in system hydraulics, were assessed. Sequestration of Cr(VI) occurred primarily by precipitation of Fe(III)-Cr(III) (oxy)hydroxides. Trace amounts of Cr were observed in iron hydroxy carbonate presumably due to substitution of Cr3+ for Fe3+. The formation of Fe(III)-Cr(III) (oxy)hydroxide greatly decreased the reactivity of the Fe 0 and thus resulted in migration of the Cr removal front. Carbonate minerals did not appear to contribute to further passivation with regard to reactivity toward Cr removal; rather, the column receiving high contents of dissolved calcium carbonate showed slightly enhanced Cr removal by means of a higher corrosion rate of Fe 0 and because of sequestration by an iron hydroxy carbonate. Precipitation of carbonates, however, governed other geochemical parameters. The porosity and hydraulic conductivity in the column receiving high contents of dissolved calcium carbonate did not indicate a great loss in system permeability because the accumulation of carbonates declined as the Fe 0 was passivated over time. However, the accumulated carbonates and associated Fe(III)-Cr(III) (oxy)hydroxide could cause problems because the presence of these solids resulted in a decline in flow rate after about 1400 pore volumes of operation.  相似文献   

13.
Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.  相似文献   

14.
Stable hydrogen isotopes of two chlorinated solvents, trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA), provided by five different manufacturers, were determined and compared to their carbon and chlorine isotopic signatures. The isotope ratio for delta2H of different TCEs ranged between +466.9 per thousand and +681.9 per thousand, for delta13C between -31.57 per thousand and -27.37 per thousand, and for delta37Cl between -3.19 per thousand and +3.90 per thousand. In the case of the TCAs, the isotope ratio for delta2H ranged between -23.1 per thousand and +15.1 per thousand, for delta13C between -27.39 per thousand and -25.84 per thousand, and for delta37Cl between -3.54 per thousand and +1.39 per thousand. As well, a column experiment was carried out to dechlorinate tetrachloroethylene (PCE) to TCE using iron. The dechlorination products have completely different hydrogen isotope ratios than the manufactured TCEs. Compared to the positive values of delta2H in manufactured TCEs (between +466.9 per thousand and +681.9 per thousand), the dechlorinated products had a very depleted delta2H (less than -300 per thousand). This finding has strong implications for distinguishing dechlorination products (PCE to TCE) from manufactured TCE. In addition, the results of this study show the potential of combining 2H/1H analyses with 13C/12C and 37Cl/35Cl for isotopic fingerprinting applications in organic contaminant hydrogeology.  相似文献   

15.
Investigation of gas production and entrapment in granular iron medium   总被引:1,自引:0,他引:1  
A method for measuring gas entrapment in granular iron (Fe0) was developed and used to estimate the impact of gas production on porosity loss during the treatment of a high NO3- groundwater (up to approximately 10 mM). Over the 400-d study period the trapped gas in laboratory columns was small, with a maximum measured at 1.3% pore volume. Low levels of dissolved H2(g) were measured (up to 0.07+/-0.02 M). Free moving gas bubbles were not observed. Thus, porosity loss, which was determined by tracer tests to be 25-30%, is not accounted for by residual gas trapped in the iron. The removal of aqueous species (i.e., NO3-, Ca, and carbonate alkalinity) indicates that mineral precipitation contributed more significantly to porosity loss than did the trapped gases. Using the stoichiometric reactions between Fe0 and NO3-, an average corrosion rate of 1.7 mmol kg-1 d-1 was derived for the test granular iron. This rate is 10 times greater than Fe0 oxidation by H2O alone, based on H2 gas production. NO3- ion rather than H2O was the major oxidant in the groundwater in the absence of molecular O2. The N-mass balance [e.g., N2g and NH4+ and NO3-] suggests that abiotic reduction of NO3- dominated at the start of Fe0 treatment, whereas N2 production became more important once the microbial activity began. These laboratory results closely predict N2 gas production in a separated large column experiment that was operated for approximately 2 yr in the field, where a maximum of approximately 600 ml d-1 gas volumes was detected, of which 99.5% (v/v) was N2. We conclude that NO3- suppressed the production of H2(g) by competing with water for Fe0 oxidation, especially at the beginning of water treatment when Fe0 is highly reactive. Depends on the groundwater composition, gas venting may be necessary in maintaining PRB performance in the field.  相似文献   

16.
The successful dechlorination of mixtures of chlorinated hydrocarbons with zero-valent metals requires information concerning the kinetics of simultaneous degradation of different contaminants. This includes intraspecies competitive effects (loading of the reactive iron surface by a single contaminant) as well as interspecies competition of several contaminants for the reactive sites available. In columns packed with zero-valent iron, the degradation behaviour of trichloroethylene (TCE), cis-dichloroethylene (DCE) and mixtures of both was measured in order to investigate interspecies competition. Although a decreasing rate of dechlorination is to be expected, when several degradable substances compete for the reactive sites on the iron surface, TCE degradation is nearly unaffected by the presence of cis-DCE. In contrast, cis-DCE degradation rates decrease significantly when TCE is added. A new modelling approach is developed in order to identify and quantify the observed competitive effects. The numerical model TBC (Transport, Biochemistry and Chemistry, Sch?fer et al., 1998a) is used to describe adsorption, desorption and dechlorination in a mechanistic way. Adsorption and degradation of a contaminant based on a limited number of reactive sites leads to a combined zero- and first-order degradation kinetics for high and low concentrations, respectively. The adsorption of several contaminants with different sorption parameters to a limited reactive surface causes interspecies competition. The reaction scheme and the parameters required are successfully transferred from Arnold and Roberts (2000b) to the model TBC. The degradation behaviour of the mixed contamination observed in the column experiments can be related to the adsorption properties of TCE and cis-DCE. By predicting the degradation of the single substances TCE and cis-DCE as well as mixtures of both, the calibrated model is used to investigate the effects of interspecies competition on the design of permeable reactive iron barriers. Even if TCE is present in only small concentrations (>3% of molar cis-DCE concentration) it is the contaminant limiting the residence time and the required thickness of the iron barrier.  相似文献   

17.
Although progress has been made toward understanding the surface chemistry of granular iron and the mechanisms through which it attenuates groundwater contaminants, potential long-term changes in the solute transport properties of granular iron media have until now received relatively little attention. As part of column investigations of alterations in the reactivity of granular iron, studies using tritiated water (3H(2)O) as a conservative and non-partitioning tracer were periodically conducted to independently isolate transport-related effects on performance from those more directly related to surface reactivity. Hydraulic residence time distributions (HRTDs) within each of six 39-cm columns exposed to bicarbonate solutions were obtained over the course of 1100 days of operation. First moment analyses of the data revealed generally modest increases in mean pore water velocity (v) over time, indicative of decreasing water-filled porosity. Gravimetric measurements provided independent estimates of water-filled porosity that were initially consistent with those obtained from 3H(2)O tracer tests, although at later times, porosities derived from gravimetric measurements deviated from the tracer test results owing to mineral precipitation. The combination of gravimetric measurements and 3H(2)O tracer studies furnished estimates of precipitated mineral mass; depending on the assumed identity of the predominant mineral phase(s), the porosity decrease associated with solute precipitation amounted to 6-24% of the initial porosity. The accumulation of mineral and gas phases led to the formation of regions of immobile water and increased spreading of the tracer pulse. Application of a dual-region transport model to the 3H(2)O breakthrough curves revealed that the immobile water-filled region increased from initially negligible values to amounts ranging between 3% and 14% of the total porosity in later periods of operation. For the aged columns, mobile-immobile mass transfer coefficients (k(mt)) were generally in the range of 0.1-1.0 day(-1) and reflected a slow exchange of 3H(2)O between the two regions. Additional model calculations incorporating sorption and reaction suggest that although changes in HRTD can have an appreciable effect on trichloroethylene (TCE) transformation, the effect is likely to be minor relative to that stemming from passivation of the granular iron surface.  相似文献   

18.
Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO(4) reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO(4)-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO(4) in the influent to render the reduction of this species unimportant to the geochemical processes in the column.The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO(3(S))).In the column where significant SO(4) reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO(4) reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO(3(S))). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction.The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO(4) was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column 2. In this column, the total reacted S(-II) estimated from the concentration of dissolved sulfur species was in good agreement with the produced Cr(II)-reducible sulfur in the solid phase. Solid-phase analysis of the sulfur species indicated that up to half of the originally produced FeS may have possibly transformed to FeS(2).  相似文献   

19.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. Part 2 of this article describes the history of TCE and TCA. TCE production in the United States began in the early 1920s. TCE was used as a replacement for petroleum distillates in the dry-cleaning industry, and became the solvent of choice for vapor degreasing in the 1930s. TCE’s use as a degreaser decreased in the 1960s due to toxicity concerns and the increasing popularity of TCA. Significant TCA use began in the 1950s with the development of suitable stabilizer formulations. In the 1990s, TCA was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

20.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. Part 2 of this article describes the history of TCE and TCA. TCE production in the United States began in the early 1920s. TCE was used as a replacement for petroleum distillates in the dry-cleaning industry, and became the solvent of choice for vapor degreasing in the 1930s. TCE's use as a degreaser decreased in the 1960s due to toxicity concerns and the increasing popularity of TCA. Significant TCA use began in the 1950s with the development of suitable stabilizer formulations. In the 1990s, TCA was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号