首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
潮滩盐沼植物翅碱蓬对常见重金属的累积吸收及其机制   总被引:2,自引:0,他引:2  
潮滩盐沼植物翅碱蓬对常见重金属(Cu、Zn、Pb和Cd)的累积吸收研究表明,该植物对常见重金属有一定的累积且随潮滩变化不明显,其对Cu、Zn、Pb和Cd的累积吸收系数分别为4. 7、4. 6、3. 1和4. 9,而生物富集吸收系数则分别为0. 97、1. 73、0.41和2.23;植物体内不同部位的分布、迁移规律研究表明,植物的不同部位累积情况存在明显差异,Cu表现为根>茎>叶,Zn表现为叶>根>茎,Pb表现为根>叶>茎,Cd表现为根>茎≈叶。在此基础上初步探讨了翅碱蓬对常见重金属累积吸收机制。  相似文献   

2.
花生和油菜对重金属的积累及其成品油的安全性   总被引:4,自引:0,他引:4  
土壤重金属污染日益严重,植物修复作为一种环境友好型的技术越来越受到关注.选取种植在郴州重金属污染土壤地区的花生和油菜2种油料作物,研究了重金属在这2种油料作物各部位的分布情况,再利用2种有机溶剂(正己烷和石油醚)对果实进行索氏萃取,探讨油中重金属的残留情况.结果表明,花生和油菜对重金属有一定的耐性和积累能力,花生根、茎、叶对重金属Pb、Cu、Cd积累性较强,其中Cd在根、茎、叶中的富集系数都高于4,为土壤本底值的5~6倍.花生红皮则对Cu表现出较强的富集能力,富集系数为3.30,浓度达到了358.26 mg/kg;油菜中重金属Zn、Cu、Cd在各部位的分布为:叶>根>果荚>茎>籽,说明油菜叶对Zn、Cu、Cd的积累能力更强.通过2种有机溶剂对花生果实和油菜籽进行萃取,结果发现,石油醚对花生油的萃取率高于正己烷,正己烷对油菜的萃取率大于石油醚,且花生和菜籽的毛油中重金属As和Pb的含量都符合国家《食用油卫生标准》GB2716-2005(≤0.1 mg/kg).  相似文献   

3.
垃圾渗滤液中溶解性有机物对土壤中重金属迁移的影响   总被引:2,自引:0,他引:2  
垃圾渗滤液主要组分中含有重金属和大量的溶解性有机物(DOM).实验选用北方最具代表性的褐土为供试样品,通过室内土柱淋滤实验研究了垃圾渗滤液溶解性有机物对重金属Cu、Cd、Pb和Zn在土壤中的迁移行为的影响.结果显示,DOM对土壤中Cd、Zn的垂直迁移起着促进作用,而对Cu、Pb迁移起着一定的抑制作用;不同浓度的垃圾淋洗...  相似文献   

4.
人工湿地宽叶香蒲对重金属的累积与机理   总被引:2,自引:0,他引:2  
宽叶香蒲(Typha latifolia L.)对环境胁迫具有较强的耐性。为了解宽叶香蒲对重金属的富集能力与耐性机理,通过野外调研,采集韶关凡口铅锌矿废水处理人工湿地中的宽叶香蒲与相应土壤样品,测定了土壤、植物的重金属总量与叶片亚细胞中重金属含量,分析了植物重金属含量与土壤重金属含量的相关性,并估算了宽叶香蒲地上部对重金属的提取量。土壤p H值在6.83~7.70之间,宽叶香蒲能有效降低土壤中的Cd、Pb、Zn、Cu和Mn的含量,对重金属的吸收主要受土壤重金属含量的影响,Pb和Cd的富集系数平均在0.5以上;除Fe外,叶片重金属主要分布在细胞壁和胞基质中。结果表明,宽叶香蒲是多种重金属的耐性植物,根系对重金属的富集与选择性向上运输、叶片细胞壁和胞基质对过量重金属的阻隔与结合作用是宽叶香蒲耐受重金属的重要机理。  相似文献   

5.
分别以浙江省境内富阳某铅锌矿区(FY)、淳安某铅锌矿区(CA)、诸暨某铅锌矿区(ZJ)和三门某铅锌矿区(SM)为研究对象,对铅锌矿区土壤的Zn、Pb、Cu、Cd 4种重金属污染状况及其上生长的16种优势草本植物的重金属富集特征进行了研究。结果表明,FY、ZJ和SM的土壤均受Cd、Zn、Pb重度污染,而CA的土壤受Cd、Zn、Cu重度污染。4个铅锌矿区的Cd污染最严重,其次为Zn污染。CA的伴矿景天(Sedum plumbizincicola)和ZJ的紫花香薷(Elsholtzia argyi)地上部Cd质量浓度分别为571.2、218.7mg/kg,且富集系数和转运系数均超过1,达到了Cd超富集植物的标准,表明这两种植物均可能是Cd超富集植物。  相似文献   

6.
铜绿山矿区菜地土壤重金属污染特征   总被引:2,自引:0,他引:2  
以铜绿山矿区菜地为研究对象,测定了土壤和蔬菜中Cu、Zn、Pb、Cd 4种重金属的含量,分析了土壤-蔬菜体系重金属的污染特征和蔬菜对重金属的富集能力。结果表明:矿区菜地土壤中重金属Cu、Zn、Pb、Cd的污染因子分别为10.63、1.12、1.10、0.06,表明Cu污染非常严重,Zn、Pb属轻度污染,Cd无污染;参考《食品中污染物限量》(GB 2762—2017)、《食品中铜限量卫生标准》(GB 15199—94)以及《食品中锌限量卫生标准》(GB 13106—91),蔬菜中Cu、Zn污染较严重且具有普遍性;蔬菜中Cd含量虽均未超出食品安全限值,但明显高于蔬菜根部土壤中的Cd含量;叶菜类、根茎类蔬菜中Pb均未超标,瓜果类蔬菜中Pb超标;蔬菜可食部位对重金属的富集能力为CdZnCuPb;蔬菜中重金属含量与土壤重金属含量总体表现出较弱的相关性,表明蔬菜中重金属的积累不完全决定于土壤重金属的含量,还与土壤中重金属的生物有效性、环境行为及其他环境因素有关。  相似文献   

7.
用通用浸提剂Mehlich 3研究城市污泥重金属生物有效性   总被引:2,自引:0,他引:2  
采用Mehlich3(M3)通用浸提剂对经稳定化处理的城市污泥中重金属元素Cd、Cr、Pb、Ni、Zn、Cu的有效态进行提取,同时进行了小麦盆栽试验,将M3通用浸提剂浸提所得的重金属元素有效态含量与该元素在小麦幼苗茎叶和根系中的元素的富集量进行相关分析.结果表明,城市污泥中不同元素的有效态含量明显不同.M3提取的有效态Cd、Cr、Cu与幼苗茎叶富集Cd、Cr、Cu极显著相关,但Pb、Ni、Zn的有效态含量与植物茎叶富集量相关性不明显,主要原因可能与元素从植物根系向茎叶迁移能力有关.M3提取的污泥中重金属的有效态含量与小麦幼苗根系富集的重金属元素的含量呈现显著的相关性.因而M3可用于污泥中重金属元素潜在的生物有效性评价.  相似文献   

8.
为探究淮南潘集矿区内农田土壤和小麦中重金属的污染状况,选取了16块研究样地,测定其农田土壤和小麦不同部位中Cu、Zn、Pb、Cd、As含量,利用生物富集系数(BCF)和转运系数(TCF)分析重金属在小麦中的迁运行为,并进行重金属化学形态分析和潜在生态风险指数分析。结果表明,矿区农田土壤Zn、Pb浓度平均值低于背景浓度,Cu、Cd、As浓度平均值分别是背景浓度的1.03、4.17、1.81倍。5种重金属的化学形态以残渣态为主,Cu、Zn、Pb、Cd、As的残渣态质量分数平均值分别为47.44%、50.33%、43.36%、46.84%、98.86%。矿区农田土壤重金属综合潜在生态风险指数处于轻度或中度等级,相对较轻,主要贡献重金属是Cd。Cu、Zn易于富集在小麦地上部分,Pb、Cd、As大部分富聚在地下部分。  相似文献   

9.
在龙口市污灌区采集70个土壤样品测定Cr、Ni、Pb、Zn、Cu、Co、As和Cd含量,利用富集因子法分析各重金属的空间分布情况,采用地理探测器模型评估7个影响因子对重金属空间分布的影响及各影响因子间的交互作用.结果表明:(1)Cu、Pb、Zn、As、Cd的富集程度较大,Co、Cr、Ni富集程度较低,8种重金属富集系数...  相似文献   

10.
锑矿区土壤重金属污染及优势植物对重金属的富集特征   总被引:4,自引:0,他引:4  
通过野外调查采样,分析了冷水江锑矿区4个采样点土壤和优势植物中重金属含量,以及矿区生长的5种优势植物对Sb、As、Cd、Pb、Cu和Zn的的吸收与富集能力及其富集特性。结果表明,矿区土壤中6种重金属元素的平均含量均超出湖南省土壤背景值和全国土壤背景值,土壤受Sb污染最严重,其次是Cd、As的污染。5种优势植物淡竹叶、苎麻、芒草、狗尾草和白背叶体内Sb、As的含量都超过正常范围,具有修复矿区土壤Sb、As污染的潜力。其中苎麻对Sb的富集系数和转运系数均大于1,满足Sb超富集植物的基本特征,可作为生态恢复的先锋植物;芒草对Cd的富集系数和转运系数都大于1,对重金属有较强的耐性,作为重金属污染的修复植物具有较好的应用前景。  相似文献   

11.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

12.
Liu X  Zhao S  Sun L  Yin X  Xie Z  Honghao L  Wang Y 《Chemosphere》2006,65(4):707-715
Concentrations of P and trace metals Zn, Cu, Cd, Pb and Hg in the faeces, bones, eggshells and feathers of seabirds and in the plants, soils and sediments with and without seabird influence on Dongdao Island, South China Sea, were determined and analyzed. Among the seabird biomaterials, the levels of P, Zn, Cu and Cd are the highest in the droppings and several times those in other materials; the Hg concentration is the highest in the feathers; and the Pb content is comparable among these biomaterials. These marked differences indicate different intake-bioaccumulation-elimination pathways for different trace metals. The levels of P, Zn, Cu, Cd and Hg in the plant, soil and sediment samples with the influence of seabird droppings are significantly higher than those in the samples without, and they are significantly correlated with each other. Thus, P, Zn, Cu, Cd and Hg are very likely to have a common source-predominantly bird guano-and the faeces of red-footed booby is an important vector for the flux of nutrient phosphorus and trace metals Zn, Cu, Cd and Hg from marine to island ecosystems on Dongdao Island.  相似文献   

13.
Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.  相似文献   

14.
Leek (Allium ameloprasum) was grown in pot trials in two clay loams of contrasting organic contents, with and without indigenous mycorrhizal propagules. Sewage sludges containing varying levels of Cd, Cu and Zn were added. Extractable soil metals, plant growth, major nutrient content and accumulation of metals, and soil microbial indices were investigated. The aim was to establish whether soil organic content and mycorrhizal status affected plant and microbial exposure to these metals. Extractable metals were higher and responses to inputs more pronounced in the arable, lower organic matter soil, although only Cd showed a soil difference in the CaCl2 fraction. There were no metal toxic effects on plants and some evidence to suggest that they promoted growth. Uptake of each metal was higher in the larger plants of the grassland, higher organic matter soil. Inoculation with arbuscular mycorrhizal fungi increased root Cd and Zn concentrations. With the exception of Cd (roots) and Zn (shoots), higher inputs of sludge metals did not increase plant metals. Zn and Cu, but not Cd, concentrations were higher in roots than in shoots.  相似文献   

15.
According to the European Thematic Strategy for Soil Protection, the characterization of the content and source of heavy metals in soils are necessary to establish quality standards on a regional level that allow the detection of sampling sites affected by pollution. In relation to this, the surface horizons of 54 agricultural soils under vegetable crops in the Alicante province (Spain), a representative area of the European Mediterranean region, were sampled to determine the content of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Analytical determinations were performed by atomic absorption spectroscopy after microwave sample digestion in acid solution. Results indicated that heavy metal levels were similar to those reported by authors working on agricultural soils from other parts of the Mediterranean region, with the exception of Cu and Pb in some samples. Multivariate analysis (principal component analysis and cluster analysis) was performed to identify a common source for heavy metals. Moreover, soil properties were determined in order to characterize agricultural soils and to analyze relationships between heavy metal contents and soil properties. The content of Co, Cr, Fe, Mn, Ni and Zn were associated with parent rocks and corresponded to the first principal component called the lithogenic component. A significant correlation was found between lithogenic metals and some soil properties such as soil organic matter, clay content, and carbonates, indicating an important interaction among them. On the other hand, elements such as Cd, Cu and Pb were related to anthropic activities and comprised the second (Cu and Pb) and third principal components (Cd), designated the anthropogenic components. Generally, Cd, Cu and Pb showed a lower correlation with soil properties due to the fact that they remain in available forms in these agricultural soils. Taking into account these results and other achieved in other parts of the European Mediterranean region, it can be concluded that soil quality standards are highly needed to declare soils affected by human induced pollution. This is particularly relevant for anthropogenic metals (Cd, Cu and Pb, and in some areas also Zn). Further research in other agricultural areas of the region would improve the basis for proposing such soil quality standards.  相似文献   

16.
Tree species effect on the redistribution of soil metals   总被引:1,自引:0,他引:1  
Phytostabilization of metals using trees is often promoted although the influence of different tree species on the mobilization of metals is not yet clear. Soil and biomass were sampled 33 years after planting four tree species (Quercus robur, Fraxinus excelsior, Acer pseudoplatanus, Populus 'Robusta') in a plot experiment on dredged sediment. Poplar took up high amounts of Cd and Zn and this was associated with increased Cd and Zn concentrations in the upper soil layer. The other species contained normal concentrations of Cd, Cu, Cr, Pb and Zn in their tissues. Oak acidified the soil more than the other species and caused a decrease in the concentration of metals in the upper soil layer. The pH under poplar was lower than expected and associated with high carbon concentrations in the top soil. This might be assigned to retardation of the litter decomposition due to elevated Cd and Zn concentrations in the litter.  相似文献   

17.
Fire has been considered as an improving factor in soil quality, but only if it is controlled. Severe wild fire occurred in the summer 2007 on the Vidlic Mountain (Serbia) overspreading a huge area of meadows and forests.Main soil characteristics and content of heavy metals (Cu, Pb, Cd, Zn) in different fractions obtained after sequential extraction of soil from post-fire areas and from fire non disturbed areas were studied. In four plant species of Lamiaceae family (Ajuga genevensis L., Lamium galeobdolon (L.) L., Teucrium chamaedrys L., Acinos alpinus (L.) Moench.), that grow in typical habitats of the mountain, distribution of heavy metals in aerial parts and roots was investigated too.For all samples from post-fire area cation exchange capacity and soil organic matter content are increased while rH is decreased. Fire caused slightly increased bioavailability of the observed metals but more significant rise happened in metal amounts bound to oxides and organics. The plants showed variable behavior. T. chamaedrys collected on the post-fire area contained elevated concentrations of all analyzed metals. A. alpinus showed higher phytoaccumulation for Zn and Cd, while the other two plant species for Pb and Cd in the post-fire areas.  相似文献   

18.
Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.  相似文献   

19.
The potential of nine different species to grow in the presence of metals (As, Cd, Cu, Pb and Zn) and to accumulate them in the shoots was assessed for each metal separately by germination and root length tests, and successively by hydroponic experiments. Of the nine species tested, Brassica carinata was the species that accumulated the highest amounts of metals in shoots without suffering a significant biomass reduction. To further evaluate the potential of B. carinata for chelant-enhanced phytoextraction of a natural, multiply metal-polluted soil (As, Cd, Cu, Pb and Zn), both hydroponic and pot experiments were carried out with nitrilotriacetic acid (NTA) or (S,S)-ethylenediamine disuccinic acid (EDDS) as complexing agents. The hydroponic study with solutions containing the five metals together showed that accumulation of Cd, Cu, Pb and Zn in shoots was higher following EDDS addition compared to NTA. EDDS was more effective than NTA in desorbing Cu, Pb and Zn from the soil, whereas As and Cd were poorly extracted. B. carinata plants were grown for 4 weeks in the multiply metal-contaminated soil and then the soil was amended with 5 mmol kg(-1) NTA or EDDS. All plants were harvested 1 week after amendment. In comparison to NTA, EDDS was more effective in enhancing the concentrations of Cu, Pb and Zn in B. carinata shoots (2- to 4-fold increase compared to the control). One week after chelant addition, the DTPA-extractable metal concentrations in the polluted soil were lower in the EDDS treatment in comparison with the NTA amendment. Even though B. carinata showed a reduced growth and a relatively low metal uptake, it demonstrated the ability to survive and tolerate the presence of more metals simultaneously.  相似文献   

20.
We investigated concentrations of Zn, Cu, Cd and Pb in the compartments of a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in four polluted locations in the Biesbosch floodplains, the Netherlands, and two reference locations. Total soil metal concentrations in the polluted locations were 4-20 times higher than those in the reference locations. Positive relationships between the generally low leaf concentrations and the soil concentrations were found for Zn only (r2 = 0.20). Bioaccumulation of Zn, Cu and Cd was observed in the snail tissues. We found positive relationships between the snail and leaf concentrations for all metals (range r2 = 0.19-0.46). The relationships between soil and snail concentrations were also positive, except for Cu (range r2 = 0.15-0.33). These results suggest transfer of metals to C. nemoralis snails from U. dioica leaves and from the soil. Metal transfer from polluted leaves to C. nemoralis is more important than transfer from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号