首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
High concentration of nitrogen and phosphorus and imbalance of N/P can lead to the formation of water and the malignant proliferation of toxic microalgae. This study put forward the advanced nutrient removal with the regulation of effluent N/P as the core in order to restrain the eutrophication and growth of poisonous algae. According to the preliminary study and review, the optimal N/P for non-toxic green algae was 50:1. The horizontal sub-surface flow constructed wetland was filled with steel slag and ceramsite to achieve the regulation of effluent N/P. The results showed that steel slag had the stable P removal capacity when treating synthetic solution with low P concentration and the average removal rate for 1.5, 1.0, and 0.5 mg/L synthetic P solution was 2.98 ± 0.20 mg kg−1/h, 2.26 ± 0.15 mg kg−1/h, and 1.11 ± 0.10 mg kg−1/h, respectively. Combined with P removal rate and P removal task, the filling amount of steel slag along the SSFCW (sub-surface flow constructed wetland) was 3.22 kg, 4.24 kg, and 4.31 kg. In order to ensure the stability of dephosphorization of steel slag, the regeneration of P removal capacity was investigated by switching operation of two parallel SSFCW in 20 days for cycle. The N removal was limited for the deficiency of carbon source (COD (chemical oxygen demand)/TN = 3–4), and was stable at 18.5–31.9% which was less affected by temperature. Therefore, by controlling the process of quantitative P removal of steel slag, the effluent N/P in SSFCW can be stable at 40–60:1 in the whole year, so as to inhibit the malignant proliferation of toxic algae.  相似文献   

2.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   

3.
Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g(-1) wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g(-1). The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g(-1). In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g(-1)), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g(-1), THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g(-1) for at-risk groups.  相似文献   

4.
Background, aim, and scope  At tropical latitudes, and especially on the semi-arid coasts of the Brazilian Northeast, the rainfall regime governs the water quality of estuaries due to the pronounced difference between the rainy and dry seasons. These changes may be responsible for seasonal changes in bioavailability of mercury (Hg) and other pollutants to the estuarine and coastal biota. Mercury bioaccumulates along estuarine–marine food chains usually result in higher concentrations in tissues of top predators and posing a risk to both marine mammals and humans alike. The Goiana River Estuary (7.5° S) is a typical estuary of the semi-arid tropical regions and supports traditional communities with fisheries (mollusks, fish, and crustacean). It is also responsible for an important part of the biological production of the adjacent coastal waters. Materials and methods   Trichiurus lepturus (Actinopterygii: Perciformes) is a pscivorous marine straggler. Fish from this species (n = 104) were captured in a trapping barrier used by the local traditional population and using an otter trawl net along the main channel of the low estuary during two dry seasons (D1 = November, December 2005, January 2006; D2 = November, December 2006, January 2007) and the end of a rainy season (R = August, September, October 2006). Fish muscle samples were preserved cold and then freeze-dried prior to analysis of its total mercury (Hg-T) contents. Total mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. Results  The studied individuals (n = 104) were sub-adult (30–70 cm, 71 ind.) and adult fish (>70 cm, 33 ind.). Weight (W) (204.1 ± 97.9 g, total biomass = 21,229.7 g) and total length (TL) (63.1 ± 10.1 cm, range 29.5–89.0 cm) presented a significant (p < 0.05) correlation. Two-way ANOVA (n = 81) showed that TL and W had significant differences (p < 0.05) among seasons, being higher in D1 than in D2 and R, respectively. Moreover, season vs. month interaction were detected for the variables length and weight. For the variable weight was detected significant difference for the factor month (p < 0.05). It suggests that the fish enter the estuary at the end of the rainy season and increase in length and weight during the time they spend in the estuary. Fish from this estuary are shown to be fit for human consumption (125.3 ± 61.9 μgHg-T kg–1 w.wt.; n = 104). Fish mercury contents increased with size and weight. Correlations between TL and Hg-T (r = 0.37286) and between W and Hg-T (r = 0.38212) were significant (p < 0.05). Dryer months showed higher mercury concentrations in fish (D1 773.4 ± 207.5 μgHg-T kg–1 d.wt., n = 27; D2 370.1 ± 78.8 μgHg-T kg–1 d.wt., n = 27; R 331.2 ± 138.5 μgHg-T kg–1 d.wt., n = 27). The variable mercury concentration showed differences in relation to the factor season (p < 0.05), where fish captured during the first dry season showed the highest concentration of mercury. The correlation between Hg-T and rainfall (Rf) showed a negative correlation (r = –0.56; p < 0.05). Discussion  The main likely source of mercury to this estuary is diffuse continental run off, including urban and industrial effluents. Since concentration of mercury in fish tissue is negatively correlated to rainfall, but positively correlated with fish length and weight, it suggests that fish growth in this estuary results in mercury uptake and concentration on the fish tissue. In the dry season of 2005–2006, when rainfall remained below the historic average, fish bioaccumulated significantly more mercury than in the dry season 2006–2007, when rainfall was within the predictable historic average. It is suggested that less rainfall, and consequently less particulate matter and less primary production in the estuary, make mercury more available to the higher levels of the estuarine food chain. In the case of higher rainfall, when river flow increases and water quality in the estuary is reduced, mercury probably is quickly exported associated to the particulate matter to the adjacent coastal waters where it then disperses. This species is a potential routine bioindicator for mercury contamination of the biota, but so far was used only with a limited number of individuals and contexts. Conclusions  Fish from the Goiana River estuary can still be safely consumed by the local population. However, any further contamination of this resource might lead to total mercury levels above the recommended limits for pregnant women and small children. The proposed heavy dependency of total mercury levels in fish on water quality indicates that land use and water quality standards must be more closely watched in order to guarantee that best possible practices are in place to prevent bioaccumulation of mercury and its transfer along the food chain. Human interventions and climatic events which affect river water flow are also playing a role in the mercury cycle at tropical semi-arid estuaries. Recommendations and perspectives   T. lepturus is largely consumed by coastal populations of tropical and sub-tropical countries all over the world. It is also consumed by a number of marine mammals over which we have a strong conservation interest. This species is also a link among different ecosystems along the estuarine ecocline. Therefore, knowledge of its degree of contamination might contribute to public health issues as well as marine conservation actions. Studies on mercury and other contaminants using this species as bioindicator (cosmopolitan, readily available) could help elucidating mechanisms through which pollutants are being transferred not only through the food chain, but also from estuarine–coastal–open waters. In addition, using the same species in marine pollution studies, especially as part of a mosaic of species, allows for wide range comparisons of marine food chain contamination.  相似文献   

5.
Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina   总被引:1,自引:0,他引:1  
We report on total mercury (THg) concentrations in the principal components of food webs of selected Northern Patagonia Andean Range ultraoligotrophic lakes, Argentina. The THg contents were determined using Instrumental Neutron Activation Analysis in muscle and liver of four fish species occupying the higher trophic positions (the introduced Salmo trutta, Oncorhynchus mykiss and Salvelinus fontinalis, and the native Percichthys trucha) accounted for eight lakes belonging to Nahuel Huapi and Los Alerces National Parks. We studied the food web components of both the West and East branches of Lake Moreno, including benthic primary producers such as biofilm, mosses, and macrophytes, three plankton fractions, fish, riparian tree leaves, and benthic invertebrates, namely decapods, molluscs, insect larvae, leeches, oligochaetes, and amphipods.Mercury concentrations in fish muscle varied in a wide range, from less than 0.05 to 4 μg g−1 dry weight (DW), without a distribution pattern among species but showing higher values for P. trucha and S. fontinalis, particularly in Lake Moreno.The THg contents of the food web components of Lake Moreno varied within 4 orders of magnitude, with the lower values ranging from 0.01 to 0.5 μg g−1 DW in tree leaves, some macrophytes, juvenile salmonids or benthic macroinvertebrates, and reaching concentrations over 200 μg g−1 DW in the plankton. Juvenile Galaxias maculatus caught in the pelagic area presented the highest THg contents of all fish sampled, reaching 10 μg g−1 DW, contents that could be associated with the high THg concentrations in plankton since it is their main food source. Although Lake Moreno is a system without local point sources of contamination, situated in a protected area, some benthic organisms presented high THg contents when compared with those from polluted ecosystems.  相似文献   

6.
Guanabara Bay (GB), located in the Rio de Janeiro State, is still a productive estuary on the south-eastern Brazilian coast. It is an ecosystem heavily impacted by organic matter, oil and a number of other toxic compounds, including Hg. The present study aimed to comparatively evaluate the aquatic total mercury (THg) and MeHg contamination, and the ratios of MeHg to THg (% MeHg), in 3 species of marine organisms, Micropogonias furnieri-carnivorous fish (N = 81), Mugil spp.--detritivorous fish (N = 20) and Perna perna--filter-feeding bivalves (N = 190), which are widely consumed by the population. A total of 291 specimens were collected at the bay in different periods between 1988 and 1998. THg concentrations were determined by cold vapour AAS with stannous chloride as a reducing agent. MeHg was extracted by dithizone-benzene and measured by GC-ECD. Analytical quality was checked through certified standards. All organisms presented both low THg and MeHg concentrations and they were below the maximum limit of 1,000 micrograms Hg.kg-1 wet wt. as established for human intake of predatory fish by the new Brazilian legislation. Carnivorous fish showed higher THg and MeHg concentrations, and also % MeHg in muscle tissues, than organisms with other feeding habits and lower trophic levels. The average of THg concentrations in carnivorous fish was 108.9 +/- 58.6 micrograms.kg-1 wet wt. (N = 61) in 1990 and 199.5 +/- 116.2 micrograms.kg-1 wet wt. (N = 20) in 1998, but they presented different total length and body weights. The average THg content in detritivorous fish was 15.4 +/- 5.8 micrograms.kg-1 wet wt., whereas THg concentrations ranged from 4.1 to 53.5 micrograms.kg-1 wet wt. for the molluscs. The THg and MeHg contents of mussel varied according to the sampling point and water quality. MeHg concentration in detritivorous fish was similar to MeHg concentration in molluscs, but there was a significant difference in the MeHg/THg ratio: the carnivorous fish presented higher MeHg percentages (98%) than the detritivorous fish (54%) and the molluscs (33%). Weight-normalised average concentration of THg in carnivorous fish collected in 1990 (0.18 +/- 0.08 microgram.g-1/0.7 kg wet wt.) and in 1998 (0.16 +/- 0.09 microgram.g-1/0.7 kg wet wt.) presented no significant difference (t = 1.34; P < 0.5). In conclusion, the low THg and MeHg concentrations in the organisms from the GB ecosystem, are related to its eutrophic conditions and elevated amounts of suspended matter. In this situation, Hg could be strongly complexed or adsorbed by the particulate, which would dilute the Hg inputs and reduce its residence time in the water column, with a consequent decrease in its availability to organisms.  相似文献   

7.
From June 1993 to October 1994, studies have been carried out on the effects of mercury in the Oder River and pike tissue contamination (muscle, kidney, liver). The mean mercury contents in the sediment range from 0.03 to 1.1 mg/kg dry weight. In the pike muscle, between 0.22 and 0.85 mg/kg, on a wet weight basis, were found. The measured mercury concentrations were analysed in relation to the number of macrophage centres of the liver, spleen and kidney of the pike. Positive correlations between mercury and MC response (0.54 ≤ r ≤ 0.79, p < 0.05) were found in all of these organs. The suitability of the macrophage-centre-response as a possible bioindicator for mercury pollution is discussed in the literature. In our study, the response of MCs was found to be suitable as a biomarker for the impairment of fish health.  相似文献   

8.
Mercury exposure of the local population was assessed in two areas of the Almadén mercury mining district, Spain, which has been the world’s largest producer of this element. Two groups, who are exposed to different sources of mercury, from a point source in Almadén and a diffuse source hundreds of kilometres away in the same region, were studied. Total mercury (THg) in human hair ranged from 0.20 to 9.35 mg kg−1 and the mean value was 2.64 mg kg−1. About 87% of subjects had THg levels in excess of the EPA reference dose (RfD = 1.0 mg kg−1), while a high percentage (68%) of them live in Almadén. There was a clear increase in hair Hg with reported fish consumption and the highest mean hair mercury level was 4 times the RfD in a group who had reported the highest consumption of fish. For the whole group, there was a significant effect of age, gender and fish consumption in relation to Hg concentration in the hair. Nevertheless, when both groups were tested separately by means of a multivariate regression model, there was significant exposure in those living near the mine area. Several factors such as age, gender and fish consumption remained statistically significant and were associated with THg. The main conclusion is that people living close to the hot spot are more impacted by mercury than people living further away. The intake of Hg through consumption of fish is an important parameter for Hg exposure; however, in the case of people living close to the hot spot, their levels are related to the highly Hg-impacted living environment.  相似文献   

9.
In western Alaska, mercury (Hg) could be a potential health risk to people whose diet is primarily fish-based. In 2000, total Hg (THg) and methylmercury (MeHg) were examined in northern pike (Esox lucius) and Arctic grayling (Thymallus arcticus) from two watersheds in western Alaska, the Yukon and Kuskokwim rivers. Whitefish (Coregonus sp.) were also examined from the Kuskokwim River. Pike from the Yukon and Kuskokwim rivers had mean concentrations of THg in muscle of 1.506 and 0.628 mg/kg wet wt, respectively. The mean concentrations of THg in grayling muscle from these rivers were 0.264 and 0.078 mg/kg, respectfully. Whitefish had a mean THg concentration in muscle of 0.032 mg/kg. MeHg, in pike and grayling constituted nearly 100% of the THg concentrations; the proportion was less in whitefish. A significant positive correlation between Hg levels and fish length was also found. Generally, there were no changes in Hg concentrations in pike or grayling over the last several years. Only pike from theYukon River had THg concentrations that exceeded the USFDA action level for human consumption of edible fish (1 mg/kg). Human hazard index for pike was > or = 1 for both adults and children, indicating a potential for toxic concern, especially among children. Further studies are needed to determine the environmental and human health impacts associated with these Hg concentrations in western Alaska, especially in the context of potentially increased consumption of resident fishes when anadromous salmon catches are reduced.  相似文献   

10.
Human exposure to mercury (Hg) mainly occurs through consumption of aquatics, especially fish. In aquatic systems, the bioaccumulation of Hg across trophic levels could be altered by invasive species through changing community composition. The present study is aimed at measuring total mercury (T-Hg) and methylmercury (MeHg) concentrations in non-native (redbelly tilapia (Tilapia zillii)) and native (Benni (Mesopotamichthys sharpeyi) and common carp (Cyprinus carpio)) fish species throughout Shadegan International Wetland and comparing health risk of their mercury contents to the local population. The concentrations were measured using a direct mercury analyzer (DMA 80). The average values of T-Hg and MeHg for native fishes were 19.8 and 10.49 μg/kg. These concentrations for the invasive fish were 28 and 14.62 μg/kg respectively. Despite having less length and weight than the native fish species, tilapia showed significantly higher T-Hg content, yet the lowest concentration of MeHg was observed in common carp with larger body length and weight. Concerning mercury health risk to consumers, tilapia demonstrated the highest estimated weekly intake (EWI) and percentages of tolerable weekly intake (%TWI) for both T-Hg and MeHg, while the highest hazard quotient (HQ) values were obtained for tilapia and Benni. Taken together, the mercury concentrations in the two native and non-native fishes were acceptable according to the international safety guidelines although the local people shall be warned for consumption of tilapia. Furthermore, the low calculated value of tissue residue criterion (TRC) for the wetland fishes sounds a warning.  相似文献   

11.
Commercially important fresh (581) and frozen (292) marine fish samples of 10 species were collected from seafood factories and evaluated using AAS and ICP-OES. Metal levels significantly (p < 0.05) varied within and between species. However, there were no significant correlations among metals. There were significant interspecific differences for all metals, and yellowfin tuna had the highest level of cadmium and mercury however, red seabream had maximum numbers above the standards. The metal accumulation significantly varied between bottom feeders of intermediately size locally caught fish. The mean cadmium level ranged from 0.0049 to 0.036 mg kg−1 and 1.37% of the total samples exceeded the EU and FAO standards. Mean lead content varied between 0.029 and 0.196 mg kg−1, few samples crossed the EU (2.63%) and FAO (1.6%) limits. Mean mercury level ranged from 0.015 to 0.101 mg kg−1 and none of the samples exceeded the EU limit. Of the total samples analyzed red seabream (2.06%), yellowfin tuna (1.14%), emperor (0.34%), santer bream (0.22%), king fish (0.11%) and skipjack tuna (0.11%) samples crossed the EU limits. In general, fish from these regions are within the safety levels recommended by various organizations and do not pose a health risk in terms of human diet.  相似文献   

12.
The aim of the current research was to systematically review and summarize the studies that evaluated the concentration of lead (Pb) and cadmium (Cd) in cow milk in different regions of Iran and to perform a meta-analysis of the findings. Moreover, the non-carcinogenic and carcinogenic risks of Pb and Cd through milk consumption in adult and child consumers were assessed. As a result of a systematic search in the international and national databases between January 2008 and October 2018, 17 reports involving 1874 samples were incorporated in our study for meta-analysis. The pooled concentrations of Pb and Cd were estimated to be 13.95 μg mL−1 (95% CI 9.72–18.11 μg mL−1) and 3.55 μg mL−1 (95% CI − 2.38–9.48 μg mL−1), respectively, which were lower than the WHO/FAO and national standard limits. The estimated weekly intake (EWI) of Pb and Cd through consuming milk was 16.65 and 7 μg day−1 for adults of 70 kg and 45 and 34 μg day−1 for children of 26 kg, respectively, which was well below the risk values set by Joint FAO/WHO Expert Committee on Food Additives (JECFA). The maximum target hazard quotient values (THQs) of Pb and Cd were 5.55E−5 and 5.55E−5 for adults and 5.55E−5 and 5.55E−5 for children, respectively, which were lower than 1 value, suggesting that Iranian consumers are not exposed to non-carcinogenic risk through consuming milk. Moreover, the incremental lifetime cancer risk (ILCR) of Pb estimated to be 2.96E−04 in adults and 1.0E−03 in children, indicating that consumers in Iran are at threshold carcinogenic risk of Pb through consuming milk (ILCR > 10−4). Therefore, planning and policy making for the sustainable reduction of these toxic metals in milk, particularly in industrial regions of Iran, are crucial.  相似文献   

13.
Shao D  Liang P  Kang Y  Wang H  Cheng Z  Wu S  Shi J  Lo SC  Wang W  Wong MH 《Chemosphere》2011,83(4):443-448
This study investigated total mercury (THg) and methylmercury (MeHg) concentrations in five species of freshwater fish and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The concentrations of THg and MeHg in fish pond surface sediments were 33.1-386 ng g(-1) dry wt and 0.18-1.25 ng g(-1) dry wt, respectively. The age of ponds affected the surface sediment MeHg concentration. The vertical distribution of MeHg in sediment cores showed that MeHg concentrations decreased with increasing depth in the top 10 cm. In addition, a significant correlation was observed between %MeHg and DNA from Desulfovibrionacaea or Desulfobulbus (p<0.05) in sediment cores. Concentrations of THg and MeHg in fish muscles ranged from 7.43-76.7 to 5.93-76.1 ng g(-1) wet wt, respectively, with significant linear relationships (r=0.97, p<0.01, n=122) observed between THg and MeHg levels in fish. A significant correlation between THg concentrations in fish (herbivorous: r=0.71, p<0.05, n=7; carnivorous: r=0.77, p<0.05, n=11) and corresponding sediments was also obtained. Risk assessment indicated that the consumption of largemouth bass and mandarin fish would result in higher estimated daily intakes (EDIs) of MeHg than reference dose (RfD) for both adults and children.  相似文献   

14.
The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1ng L(-1) and MeHg was less than 0.2ng L(-1). THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56)ng L(-1) at Sleepers River, Vermont; 112 (0.75)ng L(-1) at Rio Icacos, Puerto Rico; and 55 (0.80)ng L(-1) at Panola Mt., Georgia. Filtered (<0.7microm) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5ng L(-1) at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling.  相似文献   

15.
Contaminated sediments in the St. Lawrence River remain a difficult problem despite decreases in emissions. Here, sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and diffusion from the sediment to the overlying water was 17.5 ± 10.6 SE ng cm−2 yr−1 for THg and 3.8 ± 1.7 SE ng cm−2 yr−1 for MeHg. These fluxes were very small when compared to the particle-bound mercury flux accumulating in the sediment (183 ± 30 SE ng cm−2 yr−1). Studies have reported that fish from the westernmost site have higher Hg concentrations than fish collected from the other two sites of the Cornwall Area of Concern, which could not be explained by differences in the Hg flux or THg concentrations in sediments, but the highest concentrations of sediment MeHg, and the greatest proportions of MeHg to THg in both sediment and pore water were observed where fish had highest MeHg concentrations.  相似文献   

16.
Mercury is responsible for serious episodes of environmental pollution throughout the world, especially in the Amazon. This toxicity has led regulatory agencies to focus on fish as the target organism for protecting the health of humans and other sensitive organisms. Unfortunately, in the Amazon area, different sampling strategies and the wide variety of sampling areas and fish species make it extremely difficult to determine relationships across geographic regions or over time to ascertain historical trends. Thus, the aim of this work was to achieve three main objectives: a comparative study of mercury contamination in fish of Itaituba (Tapajós, located downstream of the largest gold-mining region in Amazon) and Belém (an area non-exposed to mercury pollution of anthropogenic origin), perform an analysis of inorganic mercury (IHg) versus monomethylmercury (MeHg) contents, and, finally, compare mercury contamination in Tapajós over time. Five piscivorous species were obtained in Itaituba and Belém. Also, four non-piscivorous species were collected in Itaituba. For the first time, mercury speciation showed that (1) current MeHg levels in piscivorous species in Tapajós are higher than those of the non-exposed area, (2) piscivorous species from Itaituba (dourada, filhote, and sarda) contained mercury levels above the World Health Organization safety limit (~17 %) and/or above the US Environmental Protection Agency tissue residue criterion (40 %), (3) increased MeHg is usually accompanied by increased IHg, and (4) the mean total mercury concentrations for piscivorous species in Itaituba were within the same range and, associated uncertainties as those previously reported, although a remarkable decreasing trend over time was observed for mean total Hg concentrations in non-piscivorous species from Itaituba. The present study supports the importance of continuous monitoring of both populations in the Amazon Rivers. Our results will better assist the development of preventive strategies and governmental actions to confront the problem of mercury contamination in the Amazon.  相似文献   

17.
Background, aim, and scope  The paper describes the spatial contamination of the River Kymijoki, South-Eastern Finland, and the coastal region of the Gulf of Finland with PCDD/Fs and mercury. The findings of ecotoxicologial and human health studies are also reported, including environmental and human risk assessments. Sediments from the River Kymijoki, draining into the Gulf of Finland, have been heavily polluted by the pulp and paper industry and by chemical industries. A wood preservative, known as Ky-5, was manufactured in the upper reaches of the river between 1940 and 1984 causing severe pollution of river sediments with polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF). Moreover, the sediments have been polluted with mercury (Hg) from chlor-alkali production and the use of Hg as a slimicide in pulp and paper manufacturing. Materials and methods  An extensive sediment survey was conducted as well as sediment transport modeling, toxicity screening of sediment invertebrates, and a survey of contaminant bioaccumulation in invertebrates and fish. Studies on human exposure to PCDD/Fs and the possible effects on hypermineralization of teeth as well as an epidemiological study to reveal increased cancer risk were also conducted. An assessment of the ecological and human health risks with a null hypothesis (no remediation) was undertaken. Results  The sediment survey revealed severe contamination of river and coastal sediments with PCDD/Fs and Hg. The total volume of contaminated sediments was estimated to reach 5 × 106 m3 and hot spots with extremely high concentrations (max 292,000 ng g−1 or 1,060 ng I-TEQ g−1 d.w.) were located immediately downstream from the pollution source (approximately 90,000 m3). Sediment contamination was accompanied by changes in benthic assemblages, but direct effects were masked by many factors. The fish showed only slightly elevated PCDD/F levels in muscle, but orders of magnitude higher in the liver compared with reference freshwater sites and the Baltic Sea. The concentrations in human fat did not reveal high human exposure in the Kymijoki area in general and was lower than in sea fishermen. The relative risk for total cancer among farmers was marginally higher (RR = 1.13) among those living close to the river, compared with farmers living further away, and the possibility of increased cancer risk cannot be ruled out. A conservative risk assessment revealed that the present probability of exceeding the WHO upper exposure limit of 4 pg WHO-TEQ kg−1 d−1 for PCDD/Fs and DL-PCBs was 6%. The probability of exceeding the WHO limit value of 0.23 μg kg−1 d−1 for methyl mercury was estimated to be notably higher at 62%. Based on these studies and the estimated risks connected with different remediation techniques a general remediation plan with cost benefit analysis was generated for several sub-regions in the river. Dredging, on-site treatment, and a close disposal of the most contaminated sediments (90,000 m3) was suggested as the first phase of the remediation. The decision regarding the start of remediation will be made during autumn 2008. Conclusions  The sediments in the River Kymijoki are heavily polluted with PCDD/Fs and mercury from earlier chlorophenol, chlor-alkali, and pulp and paper manufacturing. A continuous transport of contaminants is taking place to the Gulf of Finland in the Baltic Sea. The highly increased PCDD/F and Hg levels in river sediments pose an ecotoxicological risk to benthic fauna, to fish-eating predators and probably to human health. The risks posed by mercury exceed those from PCDD/Fs and need to be evaluated for (former) chlor-alkali sites and other mercury releasing industries as one basis for remediation decision making. Recommendations and perspectives  The studies form the basis of a risk management strategy and a plan for possible remediation of contaminated sediments currently under consideration in the Southeast Finland Regional Environment Centre. It is recommended that a detailed restoration plan for the most seriously contaminated areas should be undertaken. Based on current knowledge, the restoration of the whole river is not feasible, considering the current risk caused by the contaminated sediment in the river and the costs of an extensive restoration project. The experiences gained in the present case should be utilized in the evaluation of PCDD/F- and mercury-contaminated sites in other countries. The case demonstrates that the historic reservoirs are of contemporary relevance and should be addressed, e.g., in the national implementation plans of the Stockholm Convention. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The distribution of total mercury (THg) within common deciduous trees and the applicability of tree cores as biomonitors of historical environmental THg trends were assessed for both contaminated and reference sites around Kingston, Ontario. Samples were collected from Acer spp., Quercus spp. Populus spp. and Salix spp. Bark and wood THg concentrations were found to be highly correlated whereas soil and wood THg concentrations were not. There were no temporal relationships for THg in dated tree rings corresponding with any other known environmental Hg trends. The shoreline speciess, Populus and Salix spp., had the greatest bark and wood Hg concentrations reaching 18 ng/g, significantly higher than for inland trees Quercus and Acer spp. with maximum values of 7 and 1.2 ng/g for bark and wood respectively. While tree cores cannot be reliably used as temporal THg biomonitors, there is promise for tree species such as Populus spp and Salix spp as spatial indicators of local long-term Hg contamination.  相似文献   

19.
Chen L  Xu Z  Ding X  Zhang W  Huang Y  Fan R  Sun J  Liu M  Qian D  Feng Y 《Chemosphere》2012,88(5):612-619
Total mercury (THg) and methylmercury (MeHg) were measured in large number of soil samples collected from areas with different types of land use, different depth in the Pearl River Delta (PRD) of South China. THg and MeHg concentrations ranged from 16.7 to 3320 ng g−1 and 0.01 to 1.34 ng g−1, respectively. THg levels are highest in the top 0-20 cm soil layer, and decrease from the surface to bottom layer soil. Spatial variation was observed with different types of land use. Urban parks had the highest concentrations and the other areas tended to decrease in the order of residential areas, industrial areas, vegetable fields, cereal fields, and woodlands. Temporal variation was also noted, and two relatively high THg contamination zones located in the northwestern part of the PRD have significantly expanded over the last two decades. Both THg and MeHg concentrations were correlated significantly with soil organic matter (OM), but not with soil pH. THg pollution status was evaluated using two assessment methods.  相似文献   

20.
The variability of mercury (Hg) levels in Swedish freshwater fish during almost 50 years was assessed based on a compilation of 44 927 observations from 2881 waters. To obtain comparable values, individual Hg concentrations of fish from any species and of any size were normalized to correspond to a standard 1-kg pike [median: 0.69 mg kg?1 wet weight (ww), mean ± SD: 0.84 ± 0.67 mg kg?1 ww]. The EU Environmental Quality Standard of 0.02 mg kg?1 was exceeded in all waters, while the guideline set by FAO/WHO for Hg levels in fish used for human consumption (0.5–1.0 mg kg?1) was exceeded in 52.5 % of Swedish waters after 2000. Different trend analysis approaches indicated an overall long-term decline of at least 20 % during 1965–2012 but trends did not follow any consistent regional pattern. During the latest decade (2003–2012), however, a spatial gradient has emerged with decreasing trends predominating in southwestern Sweden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号