首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.  相似文献   

2.
The metabolic fate of 2,4-dichlorophenol (DCP) was investigated in six macrophytes representing different life forms. Salvinia natans and Lemna minor were chosen as surface-floating plants, Glyceria maxima and Mentha aquatica as emergent species and Myriophyllum spicatum and Hippuris vulgaris as submerged aquatic plants. After uptake of a [U-phenyl-14C]-DCP solution followed by a 48 h water chase, whole plants (L. minor, S. natans) or excised shoots were harvested and aqueous extracts were analysed by high performance liquid chromatography (HPLC). Metabolites were then isolated, submitted to enzymatic or chemical hydrolyses and characterised by electrospray ionisation-mass spectrometric analyses. Whereas DCP monoglucosides or more complex monoglucoside esters, either malonyl or acetyl, were found in most species, an unusual glucosyl-pentose conjugate was identified as the DCP major metabolite in L. minor and G. maxima. Our results showed for the first time the ability of five macrophytes to uptake and metabolise DCP and the characterisation of their metabolic pathways of DCP biotransformation.  相似文献   

3.
3种草本植物对Pb-Cd污染水体的修复研究   总被引:2,自引:0,他引:2  
采用水培实验方法,研究3种水生草本植物对Pb-Cd污染水体的生长反应及对重金属离子的修复效果。结果表明,在去除率实验中3种植物对Pb2+-Cd2+的去除率均有提高,对Pb2+的去除率分别为浮萍47.88%,水蕹菜63.89%,凤眼莲77.27%,Cd2+的去除率分别为浮萍48.32%,水蕹菜58.96%,凤眼莲76.87%。植物各器官对Pb2+-Cd2+的富集规律为:Pb2+Cd2+,根茎叶,凤眼莲水蕹菜浮萍。  相似文献   

4.
Chen TY  Kao CM  Yeh TY  Chien HY  Chao AC 《Chemosphere》2006,64(3):497-502
The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan.  相似文献   

5.
Tront JM  Saunders FM 《Chemosphere》2006,64(3):400-407
Aquatic plants uptake, transform and sequester organic contaminants and are used as a bioremediation strategy for the removal of pollutants from wastewaters. A better understanding of factors affecting rate of uptake of contaminants by aquatic plants is needed to improve engineered systems for removal of pollutants from wastewaters. This work focused on delineating sorption to plant surfaces and understanding effects of plant metabolic activity, inhibition, and media pH on the uptake of the ionizable contaminant 2,4,5-trichlorophenol (TCP) by aquatic plant Lemna minor. During L. minor exposure to TCP (0.5-13.9 mg l(-1)), a range of plant metabolic activities was measured using oxygen production rate (0-18.4 micromol h(-1)). A positive correlation was shown between contaminant uptake rate and plant activity. Contaminant uptake was examined at a range of media pH values (6-9) and uptake rates were linearly correlated to fraction of contaminant in protonated form. These results demonstrated a link between plant activity and uptake of contaminant by plants and stress the importance of incorporating plant metabolic activity and contaminant speciation in development of natural and engineered phytoremediation systems. This research also indicates that aquatic plants can actively accumulate trace-organic contaminants and may ultimately serve as a sink for these materials in the natural environment.  相似文献   

6.
Wang KS  Huang LC  Lee HS  Chen PY  Chang SH 《Chemosphere》2008,72(4):666-672
Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater.  相似文献   

7.
Procymidone, fludioxonil, and pyrimethanil are widely used to control the pathogenic fungus Botrytis cinerea in Champagne's vineyards. These fungicides may end up in surface waters and present potential risks for aquatic vascular plants and algae. Therefore, their toxicity was evaluated on Lemna minor and Scenedesmus acutus in six-day or 48-h tests, respectively. Based on growth and chlorophyll (Chl) content of L. minor and S. acutus cultures, the results showed that the alga was the most sensitive to the fungicides. Among the fungicides, pyrimethanil was the most toxic for L. minor, its nominal IC50 was 46.16 mg l(-1) and that of the other two was >100 mg l(-1). In contrast, pyrimethanil appeared the least toxic for S. acutus at low concentration, nominal IC50 were 22.81, 4.85, and 4.55 mg l(-1) for pyrimethanil, fludioxonil, and procymidone, respectively. Fate of the fungicides in the media was also investigated and acute toxicity of the agrochemicals is discussed in regard to concentration in the culture media. Poor solubility of procymidone and fludioxonil appeared to be partly responsible for the low toxicity of these fungicides. Based on these toxicity data and the concentrations found in ponds collecting vineyard runoff water, these pesticides should not impair the establishment of pioneer plants.  相似文献   

8.
Propanil (3,4-dichloropropionanilide) is a selective contact pesticide, recommended for post-emergence use in rice. This herbicide may end up in surface waters and present potential risk for aquatic vascular plants. Therefore, its toxicity was evaluated on Lemna minor L., an aquatic plant regularly used for toxicological studies, during time- and concentration-dependent exposure. Toxicity assessments were based on inhibition of growth of L. minor cultures after 24 days. The obtained results showed that the growth of Lemna was affected by the herbicide. The responses of the guaiacol peroxidase (G-POD) and glutathione S-transferase (GST) involved in the xenobiotic metabolism and antioxidative system were also investigated following Propanil exposure. Our results showed that Propanil has not induced enzymatic antioxidative defenses of L. minor. Both 3,4-dichloroaniline (3,4-DCA) and 3,4-dichloroacetanilide are the major metabolites in this plant. On the contrary, only 3,4-DCA was found in culture media after 4 days. Probably, the enzymatic hydrolysis by acyl acylamidase and the acetylation by acetyl-CoA are the major pathways for these transformation products, respectively. The results of this study showed that the selected aquatic plant has the potential to accumulate and metabolize rice herbicide, like Propanil. Based on these toxicity data this herbicide should impair the establishment of non-target aquatic plants.  相似文献   

9.
Microcosm wetland systems (5 L containers) planted with Salvinia molesta, Lemna minor, Ceratophyllum demersum, and Elodea canadensis were investigated for the removal of diclofenac, triclosan, naproxen, ibuprofen, caffeine, clofibric acid and MCPA. After 38 days of incubation, 40-99% of triclosan, diclofenac, and naproxen were removed from the planted and unplanted reactors. In covered control reactors no removal was observed. Caffeine and ibuprofen were removed from 40% to 80% in planted reactors whereas removals in control reactors were much lower (2-30%). Removal of clofibric acid and MCPA were negligible in both planted and unplanted reactors. The findings suggested that triclosan, diclofenac, and naproxen were removed predominantly by photodegradation, whereas caffeine and naproxen were removed by biodegradation and/or plant uptake. Pseudo-first-order removal rate constants estimated from nonlinear regressions of time series concentration data were used to describe the contaminant removals. Removal rate constants ranged from 0.003 to 0.299 d(-1), with half-lives from 2 to 248 days. The formation of two major degradation products from ibuprofen, carboxy-ibuprofen and hydroxy-ibuprofen, and a photodegradation product from diclofenac, 1-(8-Chlorocarbazolyl)acetic acid, were followed as a function of time. This study emphasizes that plants contribute to the elimination capacity of microcontaminants in wetlands systems through biodegradation and uptake processes.  相似文献   

10.
Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation   总被引:1,自引:0,他引:1  
Phyto-remedial efficiency of Ipomoea aquatica was examined at different experimental conditions for a period of 3 months. This plant was selected due to its easy establishment, tolerance and growing easiness. In all trials, the I. aquatica was grown in coir dust to ensure an inert medium. Essential growth nutrients were supplied externally using Albert solution. Once plant growth conditions were fixed, the model system was spiked with Cr(VI) solution in the range of 7-90 ppm. Up to 28 ppm Cr(VI), I. aquatica exhibits uniform absorption characteristics showing over 75% removal of added Cr(VI). At this stage I. aquatica was not affected and it showed no toxicity symptoms. Therefore, it is suited as a potential phyto-remediant. Further I. aquatica is a vegetable particularly in Asian region; therefore caution has to be taken when selecting it for human consumption due to its high chromium accumulation capacity.  相似文献   

11.
Mercury uptake and accumulation by four species of aquatic plants   总被引:10,自引:0,他引:10  
The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.  相似文献   

12.
Toxicity data of substances to higher plants is needed for the purpose of risk assessment, site evaluation, phytoremediation, and plant protection. However, the results from the most common phytotoxicity tests, like the OECD algae and Lemna test, are not necessarily valid for higher terrestrial plants. The willow tree toxicity test uses inhibition of transpiration (aside of growth and water use efficiency) of willow cuttings grown in spiked solutions or soils as end point to quantify toxicity. This overview presents results from 60 studies including 24 new unpublished experiments for 56 different chemicals or substrates. Highest toxicity (EC50 < 1 mg/L) was observed from exposure to heavy metals like copper and cadmium. Also, organotins and free cyanide showed very high toxicity. The toxic effect of chlorophenols on willows was comparable to that on duck weed (Lemna) and green algae, while volatile compounds like chlorinated solvents or benzene, toluene, ethylbenzene, and xylene had less effect on trees than on these aquatic plants, due to volatilization from leaves and test media. In particular low (g/L range) toxicity was observed for tested nanomaterials. Effects of pharmaceuticals (typically weak acids or bases) depended strongly of the solution pH. Like for algae, baseline toxicity was observed for willows, which is related to the water solubility of the compounds, with absolute chemical activity ranging from 0.01 to 0.1, but with several exceptions. We conclude that the willow tree toxicity test is a robust method for relating uptake, accumulation, and metabolism of substances to the toxicity to trees.  相似文献   

13.
This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L(-1) where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg(-1). The arsenic content in different parts of plants are found in the order of roots>shoots>leaves>edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg(-1))>onion bulb (0.45 mg As kg(-1))>cauliflower (0.33 mg As kg(-1))>rice (0.18 mg As kg(-1))>brinjal (0.09 mg As kg(-1))>potato (<0.01 mg As kg(-1)).  相似文献   

14.
The purpose of this study was to assess certain physiological responses of Lemna minor L. (duckweed) and Allium cepa L. (onion) to aquatic mercury at low concentrations. Following a 96-h exposure of plants to nutrient medium contaminated with known levels of mercuric chloride (HgCl(2)), 0.001 to 4 mg litre(-1) (0.0007 to 2.95 mg Hg litre(-1)) or methyl mercuric chloride (MeHgCl(2)), 0.0001 to 0.1 mg litre(-1) (0.0007 to 0.07 mg Hg litre(-1)), the physiological endpoints measured were the growth of fronds (Lemna minor) or roots (Allium cepa), and catalase and peroxidase activities in both plant assays. The EC(50) for HgCl(2) on the basis of the growth curve of Lemna minor was found to be 2.1 mg litre(-1). HgCl(2) and MeHgCl(2) were lethal to L. minor at concentrations of 4 and 0.01 mg litre(-1), respectively. The range of low concentrations that accelerated growth as well as enzymic activities in L. minor was 0.004 to 0.04 mg litre(-1) for HgCl(2) and 0.001 mg litre(-1) for MeHgCl(2). HgCl(2) and MeHgCl(2) induced maximum enzymic activity in Lemna fronds at concentrations of 0.008 and 0.0005 mg litre(-1), respectively. In Allium roots, catalase activity was accelerated at all the concentrations of HgCl(2) (0.001-2 mg litre(-1)) and MeHgCl(2) (0.0001-0.1 mg litre(-1)) tested. The activity of peroxidase was, however, accelerated by HgCl(2) at concentration range 0.01-1.0 mg litre(-1), or by MeHgCl(2) at 0.001 mg litre(-1). The concentrations of HgCl(2) and MeHgCl(2) that induced the highest enzymic activity in Allium roots were 0.05 mg litre(-1) and 0.001 mg litre(-1), respectively.  相似文献   

15.
Laboratory studies were conducted to determine the effects of different concentrations of fenhexamid (0.1, 1, and 10 mg L(-1)) on growth, oxidative stress, protein, glycogen, and metallothionein (MT) contents in Tubifex tubifex after an exposure of 2, 4, and 7 days. In addition, residues of the fungicide were followed in water and in the worms. In water, fenhexamid concentration decreased slowly (maximum -2 +/- 0.03% after 2 days for 1 mg L(-1)). In the worms, it increased after 4 days and decreased thereafter, confirming that the worms were exposed to the fungicide and not to a degradation product. LC50 values were between 95.22 +/- 5.36 and 32.11 +/- 1.8 mg L(-1) depending on exposure time. Exposure to fenhexamid had a negative effect on T. tubifex growth (maximum effect -12.2 +/- 0.8% after 7 days with 10 mg L(-1)) demonstrating the toxic effect of the pesticide. This growth rate decrease was accompanied by a reduction in protein and glycogen contents. The activity of catalase (CAT), and glutathione reductase (GR) increased in response to the fungicide demonstrating an oxidative stress in the worms. In contrast glutathion-S-transferase activity (GST) decreased. Exposure to fenhexamid also induced synthesis of MT (maximum +78 +/- 8% after 2 days for 10 mg L(-1)). The specificity of MT concentration increase in response to metals is discussed.  相似文献   

16.
Li ZH  Velisek J  Grabic R  Li P  Kolarova J  Randak T 《Chemosphere》2011,83(4):572-578
Blood is an indicator of physiological condition of an animal. Therefore, the chronic effects of propiconazole, a triazole fungicide present in aquatic environment, on hematology of rainbow trout were investigated in this study. Fish were exposed at various concentrations of PCZ (0.2, 50 and 500 μg L(-1)) for 7, 20 and 30 d. Multiple biomarkers were measured, including hematological indices (hemoglobin concentration, red blood cells count, hematocrit, leukocyte count, mean erythrocyte hemoglobin, mean erythrocyte volume and mean color concentration) and plasma biochemical parameters (ammonia, glucose, total proteins, creatine kinase, lactate dehydrogenase, alanine aminotransferase and aspartate aminotransferase). Through principal component analysis and integrated biomarker response assessment, influence extent induced by PCZ-stress of each test group was distinguished. Additional, all parameters measured in this study displayed different dependent patterns to PCZ concentrations and exposure time by two-way ANOVA. The results of this study indicate that chronic exposure of PCZ has altered multiple physiological indices in fish hematology and CK activity may be an early biomarker of PCZ toxicity; however, before these parameters are used as special biomarkers for monitoring residual PCZ in aquatic environment, more detailed experiments in laboratory need to be performed in the future.  相似文献   

17.
The selective serotonin reuptake inhibitor (SSRI) class of anti-depressants is among the most widely prescribed groups of pharmaceuticals. Consequently, aquatic ecosystems impacted by municipal wastewater discharges are predicted to receive substantial annual loadings of these compounds. Although SSRIs have been detected in fish tissues, little is known of their uptake and depuration in freshwater fish species. In this study, Japanese medaka (Oryzias latipes) were exposed to fluoxetine at a nominal concentration of 0.64 microg L(-1) for 7d and subsequently allowed to depurate in clean water over a 21d period. Fluoxetine uptake by medaka was observed within the first 5h of exposure and the biologically active metabolite, norfluoxetine, was also detected in medaka tissues during this timeframe. A maximum fluoxetine concentration was measured in medaka by the third day of the uptake phase, yielding an uptake rate constant (k(1)) of 5.9+/-0.5 (d(-1)). During the depuration phase of the experiment, a half life of 9.4+/-1.1d was determined for fluoxetine. Using these data, bioconcentration factor (BCF) values of 74 and 80 were estimated for fluoxetine and a pseudo-BCF (the ratio of the concentration of norfluoxetine in medaka and the aqueous fluoxetine concentration) of 117 was calculated for norfluoxetine. These results indicate longer persistence and greater potential for the bioaccumulation of fluoxetine and norfluoxetine in fish tissues than would be predicted from prior half life estimates derived using mammalian species.  相似文献   

18.
The aim of the present study was to show a relationship between toxicity of 100-fold concentrated water and aquatic habitat conditions. Environmental waters are 100-fold concentrated with solid-phase extraction. Medaka early fry was exposed in these waters for 48 h. The number of death and disorder was counted at 1, 2, 3, 6, 12, 24, and 48 h; toxicity was expressed using inverse median effect time and median lethal time (ET (50)(-1), LT (50)(-1)). Average score per taxon (ASPT) for benthic animals and Index of Biotic Integrity (IBI) for fish were applied as indices of aquatic habitat conditions. The results of toxicity test were compared using ASPT and IBI. The different levels of toxicity were detected in the seawater of Japan. At the Husino River area, toxicity cannot be detected. In rivers, high toxicity appeared at urban districts without sewerage. By Spearman coefficient, the relationship between toxicity and high biochemical oxygen demand (BOD) were obtained. BOD household wastewater contains hydrophobic toxic matters; otherwise, seawater in industrial area does not show clear relationship between toxicity and chemical oxygen demand. Gas chromatography to mass spectrometry simultaneous analysis database may give an answer for the source of toxicity, but further test is required. Ratio of clear stream benthic animal sharply decreased over 0.25 of LT (50)(-1) or 0.5 of ET (50)(-1). Tolerant fish becomes dominant over 0.3 of LT (50)(-1) or 0.5-1.0 of ET (50)(-1). By Pearson product-moment correlation coefficient, correlation coefficient between toxicity and ASPT was obtained at -0.773 (ET (50)(-1)) and -0.742 (LT (50)(-1)) at 1 % level of significance with a high negative correlation. Toxicity (LT (50)(-1) ) has strong correlation with the ratio of tolerant species. By Pearson product-moment correlation coefficient, correlation coefficient between toxicity and IBI obtained were -0.155 (ET (50)(-1)) and -0.190 (LT (50)(-1)) at 1 % level of significance and has a low or no correlation between toxicity and IBI. Even with low toxic environmental waters, toxicity test using 100-fold concentrated and medaka early fly could detect acute toxicity. The detected toxicity seemed to limit the inhabiting aquatic species in the water body.  相似文献   

19.
Xue PY  Li GX  Liu WJ  Yan CZ 《Chemosphere》2010,81(9):1098-1103
A comprehensive understanding of the uptake, tolerance and transport of heavy metals in the wetland system through aquatic plants will be essential for the development of phytoremediation technologies. Copper accumulation and translocation of a submersed macrophyte Hydrilla verticillata (L.f.) Royle were investigated. Plant shoots showed a significant accumulation of Cu with a maximum of 30830 mg Cu kg?1 dry weight after exposed to 4000 μg L?1 Cu for 4d. Both roots and shoots can directly take up Cu from solution and Cu mainly accumulated in cell wall fractions. Moreover, H. verticillata predominantly accumulated Cu through shoots from the aqueous solutions because of the higher weights and bioaccumulation factors of shoots than those of roots. Acropetal translocation of Cu in the plant is higher than the basipetal translocation, which implies that upward translocation of Cu is mainly via the xylem and downward translocation is mainly through the phloem. These findings contribute to the application of submerged aquatic plants to copper removal from moderately contaminated waters.  相似文献   

20.
The environmental fate and distribution of fungicide epoxiconazole were studied by a rice paddy field model ecosystem. One week before the head-sprouting stage, rice plant was treated separately once with OPUS (tradename of epoxiconazole) 12% SC 2.1 kg ha(-1) and 1.4 kg ha(-1), respectively. Soil, water and rice plant were sampled seven days intervals nine times after application. The bioconcentration factor of epoxiconazole on mosquito fish in the ecosystem was also determined, based on the amounts of epoxiconazole content both in fish and water. This was initiated one day after the fungicide treatment, and continued for four days. In addition, the residue of epoxiconazole in rice grains was analyzed after harvest. After harvest, both planted water spinach (Ipomoea aquatica Forsk) and edible amaranth (Amaranthus mangostanüs L.) were analyzed. The results showed that epoxiconazole degraded in the local environment under the experimental conditions described. The degradation equations were in accordance with the first order kinetics. The DT50 of soil, field water and rice plant were 20-69 days, 11-20 days and 14-39 days, respectively. The bioconcentration factors of epoxiconazole on mosquito fish were 12.9 and 10.6 from 2.1 kg ha(-1) and 1.4 kg ha(-1) treatment, respectively. Residues of epoxiconazole in both rice and harvest vegetables were non-detectable. This indicates that epoxiconazole applied to rice at the recommended rates and application frequencies will not accumulate on rice grain and successive cropping vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号