首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

3.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   

4.
This study measured the responses of different anti-oxidants in 2-year-old birch (Betula pendula Roth) seedlings subjected to simulated acid rain (pH 4.0) and heavy metals (Cu/Ni), applied alone or in combination for 2 months. The applied concentrations of pollutants did not significantly affect seedling biomass or total glutathione levels. Acid rain alone increased superoxide dismutase (SOD) activity both in leaves and roots, while heavy metals alone inhibited SOD activity in roots. Both acid rain and heavy metals applied singly increased ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities in leaves but decreased activities in roots. In contrast, acid rain and heavy metal treatments increased glutathione reductase (GR) activity in roots but not in leaves. Spraying birch seedlings with a mixture of acid rain and heavy metals increased SOD, APX and GPX activities in leaves and GR activity in roots. However, the effects of mixed pollutants on enzyme activities usually were less than the summed effects of individual pollutants. Enzyme responses also depended on where pollutants were applied: spraying pollutants onto the shoots initiated higher responses in SOD, APX and GPX than did application to the soil surface, while the opposite was true for GR.  相似文献   

5.
Sinha S  Saxena R  Singh S 《Chemosphere》2005,58(5):595-604
In the plant, Pistia stratiotes L., the effect of different concentrations of chromium (0, 10, 40, 80 and 160 microM) applied for 48, 96 and 144 h was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), cysteine, non-protein thiol, ascorbic acid contents and superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) activity of the plants. Both in roots and leaves, an increase in MDA content was observed with increase in metal concentration and exposure periods. In roots, the activity of antioxidant enzymes viz. SOD and APX increased at all the concentrations of Cr at 144 h than their controls. The GPX activity of the treated roots increased with increase in Cr concentration at 48 and 96 h of exposures, however, at 144 h its activity was found declined beyond 10 microM Cr. The level of antioxidants in the roots of the treated plant viz. cysteine and ascorbic acid was also found increased at all the concentrations of Cr at 144 h than their respective controls, however, an increase in the non-protein thiol content was recorded up to 40 microM Cr followed by decrease. The chlorophyll content decreased with increase in Cr concentrations and exposure periods. However, the protein content of both roots and leaves were found decreased with increase in Cr concentrations at all the exposure periods except an increase was recorded at 10 microM Cr at 48 h. In Cr treated plants, the no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for leaves chlorophyll and protein contents were 40 and 80 microM Cr, respectively after 48 h exposure while NOEC and LOEC for root protein content were 10 and 40 microM, respectively after 48 h. The analysis of correlation coefficient data revealed that the metal accumulation in the roots of the plant was found positively correlated with antioxidant parameters except SOD after 48 h of exposure, however, negatively correlated with most of all the parameters studied at 144 h in both part of the plant. It may be suggested from the present study that toxic concentrations of Cr cause oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, the higher levels of enzymatic and non-enzymatic antioxidants suggest the reason for tolerating higher levels of metals.  相似文献   

6.
Boojar MM  Goodarzi F 《Chemosphere》2007,67(11):2138-2147
This study was undertaken to identify the strategies and the status of antioxidant enzyme activities involved in three plant species tolerance against Cu-toxicity in copper mine. The following methods were used for evaluations in three wild type species; Datura stramonium, Malva sylvestris and Chenopodium ambrosioides. The level of chlorophyll and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) by spectrometry, malondialdehyde (MDA) and dityrosine by HPLC and the levels of Cu in tissues and soils by atomic absorption spectrometry (AAS).

Analysis showed that total and available copper were at toxic levels for plants growing on contaminated soil (zone 1). However, there were not any visual and conspicuous symptoms of Cu toxicity in plant species. Among three species, excess copper was transferred only into the D. stramonium and C. ambrosioides tissues. The C. ambrosioides accumulated Cu in roots and then in leaves, in which the leaves chloroplasts stored Cu around two times of vacuoles. In D. stramonium most of Cu was accumulated in leaves in which the storage rate in vacuoles and chloroplasts were 42% and 8%, respectively. In zone 1, the chlorophyll levels increased significantly in leaves of C. ambrosioides with respect to the same plant growing on uncontaminated soil (zone 2). There was insignificant decrease in chlorophyll content of D. stramonium leaves, collected from zone 1 with respect to zone 2. The D. stramonium and C. ambrosioides in zone 1, both revealed significant increase in their tissues antioxidant enzyme activities in comparison with the same samples of zone 2. There was significant elevation in oxidative damage biomarkers; MDA and dityrosine, when the aerial parts of D. stramonium in zone 1 were compared with the same parts of zone 2.

We concluded that there were different tolerance strategies in studied plant species that protected them against copper toxicity. In M. sylvestris, exclusion of Cu from the roots or its stabilization in the soil restricted Cu toxicity effects. On the other hand D. stramonium and C. ambrosioides, elevated their antioxidative enzyme activities in response to cu-toxicity. In addition, the species D. stramonium accumulated excess of Cu in leaves vacuoles.  相似文献   


7.
A pot experiment was conducted to investigate the translocation of cadmium (Cd) and lead (Pb) and assess the safety of edible parts in two cultivars of water spinach (Ipomoea aquatica Forsk.) contrasting in shoot Cd and Pb concentrations. A low-Cd-Pb cultivar (QLQ) and a high-Cd-Pb cultivar (T308) were grown in five soils with different concentrations of Cd and Pb. The results showed that QLQ had lower Cd and Pb concentrations in stems and leaves and higher root Cd concentration than T308 did. Root Pb concentration of T308 dramatically increased with increasing soil Pb concentration and was higher than that of QLQ in the highest Pb treatment. The root-to-stem Cd translocation ability in T308 was 2.3–3.0-fold higher than that in QLQ. Nevertheless, there was no significant difference in root-to-stem Pb translocation between QLQ and T308. The bioconcentration factors (BCFs) for Cd and Pb in the two cultivars remained stable in different Cd or Pb treatments, which were attributable to the homeostatic control mechanisms of Cd and Pb in water spinach.  相似文献   

8.
Li G  Sang N  Guo D 《Chemosphere》2006,65(6):1058-1063
The effects of the Xingou landfill leachate on levels of thiobarbituric acid reactive substances (TBARS) and the activities of Cu, Zn-superoxide dismutase (Cu, Zn-SOD), Se-dependent glutathione peroxidase (Se-dependent GPx) and catalase (CAT) were investigated in hearts, kidneys and spleens of Kunming albino mice of both sexes. Exposure to leachate caused significant increases of TBARS levels in the organs tested from mice of both sexes. For hearts, Cu, Zn-SOD, Se-dependent GPx and CAT activities were significantly increased at high concentrations for male mice, but the activities of these antioxidant enzymes were significantly increased at low concentration and decreased at high concentrations for female mice. For kidneys, Cu, Zn-SOD and Se-dependent GPx activities were significantly increased at high concentrations for male mice, but the activities were significantly increased at low concentrations and the ratio of increase was reduced with the increasing of concentration for female mice; CAT activities remained unchanged for male mice and were significantly increased at all concentrations tested for female mice. For spleens, Cu, Zn-SOD and Se-dependent GPx activities were significantly increased at high concentrations for male mice, but the activities were significantly increased at low concentrations and decreased at high concentrations for female mice; CAT activities remained unchanged for male mice and were significantly increased at high concentrations for female mice. The results suggest that leachate exposure can cause oxidative damage on hearts, kidneys and spleens of mice, and there were sex difference and organ difference in the response of antioxidant status.  相似文献   

9.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

10.
Yan YP  He JY  Zhu C  Cheng C  Pan XB  Sun ZY 《Chemosphere》2006,65(10):1690-1696
A pot experiment with 38 commonly cultured rice cultivars showed that the effect of Cu (100 mg kg(-1)) on rice growth, grain yield and accumulation of Cu in brown rice varied greatly with different cultivars. Although the average Cu concentration in brown rice of the 38 cultivars was significantly increased (P<0.01) compared with the control, in none of the cultivars did Cu concentration in brown rice exceed the maximum permissible limit of 10 mg Cu kg(-1). This suggests that rice grown in Cu-contaminated paddy soil (100 mg Cu kg(-1)) will not adversely affect human health through the food chain. Because of the significant negative correlation between grain weight and Cu concentration in brown rice with the soil Cu treatment, screening for cultivars with low Cu accumulation in brown rice and high grain yield for Cu-contaminated areas is feasible. The present research led to the recommendation of three such cultivars: Jiahua, Zhenxian 866, Zhe 733. The average grain yield under Cu treatment (100 mg Cu kg(-1) soil) was significantly (P<0.01) reduced compared with the control. The decreases or increases of grain yields mainly resulted from the combined effects of the panicles per pot, spikelets per panicle and filled spikelets per panicle under the soil Cu treatment. Furthermore, there were significant (r=0.869, P<0.01) positive correlations between the RC (relative changes) of spikelets per panicle and filled spikelets per panicle under the soil Cu treatment.  相似文献   

11.
12.
Liu JG  Liang JS  Li KQ  Zhang ZJ  Yu BY  Lu XL  Yang JC  Zhu QS 《Chemosphere》2003,52(9):1467-1473
The absorption and accumulation of Cd2+, Fe3+, Zn2+, Mn2+, Cu2+ and Mg2+ in the roots and leaves of 20 rice cultivars (Oryza sativa L.) with different genotypes under cadmium (Cd) stress were investigated with pot experiments. The results showed that there existed significant differences among the rice cultivars in the contents of six mineral elements in both roots and leaves at both heading and ripening periods. The statistical analysis showed that, for their contents in roots, significant and positive correlations between Cd2+ and Fe3+, Cd2+ and Zn2+, Cd2+ and Mn2+, Cd2+ and Cu2+ existed, but no significant correlation between Cd2+ and Mg2+, at the two periods. In the leaves, Cd also showed significant and positive correlations with Fe3+, Zn2+ and Cu2+ at the both periods, but a significant and negative correlation with Mn2+ and no significant correlation with Mg2+ at heading, a significant and positive correlation with Mg2+ and no significant correlation with Mn2+ at ripening. These results suggested that there were cooperative absorption between Cd2+ and Fe3+, Mn2+, Cu2+, Mn2+ in rice plants. Genotypic differences in Cd uptake and translocation among the rice cultivars suggested that paddy field of some rice cultivars may be irrigated with partially treated sewage water.  相似文献   

13.
A higher ozone concentration in rural agricultural region poses threat to food production in developing countries. The present study was conducted to evaluate the growth, biomass accumulation and allocation pattern, quantitative and qualitative characteristics of grains for two tropical rice cultivars (Oryza sativa L. cv NDR 97 and Saurabh 950) at ambient O3 concentrations at a rural site in the Indo Gangetic plains of India.Percent inhibition in number of leaves was higher for NDR 97, but in leaf area for Saurabh 950 grown in non filtered chambers (NFCs) compared to filtered chambers (FCs). Higher inhibition in root biomass was recorded in Saurabh 950 and in leaf and standing dead biomass for NDR 97. During vegetative phase, relative growth rate showed more percent inhibition in Saurabh 950, but at reproductive phase in NDR 97. Net assimilation rate showed higher values for Saurabh 950 than NDR 97 in NFCs but percent inhibition in leaf area ratio was higher for former than latter cultivar in NFCs. The ozone resistance was higher in NDR 97 during vegetative phase, but in Saurabh 950 at reproductive phase. Number of grains was higher in NDR 97 than Saurabh 950, but test weight and weight of grains m?2 showed reverse trends. Concentrations of starch, protein, P, N, Ca, Mg and K decreased, while reducing and total soluble sugar increased in grains of both the cultivars in NFCs compared to FCs. The study concluded that under ambient condition of O3 exposure, the two cultivars responded differently. Saurabh 950 favoured biomass translocation priority towards ear in reproductive phase and hence showed higher resistivity due to maintenance of higher test weight. NDR 97, however, showed better growth during vegetative period, but could not allocate efficiently to developing ears, hence higher number of unfilled grains in NFCs led lower test weight.  相似文献   

14.
The use of copper-based fungicides leads to an accumulation of copper (Cu) in vineyard soils, potentially causing adverse effects to the microbial function and fertility of the soil. This study used a soil microcosm approach to assess the effects of Cu accumulation on microbial function in vineyard soils. Surface soil samples were collected from 10 vineyards and a number of un-impacted reference sites in each of three different viticultural regions of Australia. The field-collected soils were transferred to microcosms and maintained for up to 93 days in the laboratory at 20–22 °C and 60 % of their maximum water-holding capacity. The microbial function of the soils was indicated by measuring phosphomonoesterase, arylsulfatase, urease, and phenol oxidase activities. In general, the vineyard soils had greater concentrations of Cu and lower enzyme activities than in the reference soils, although a weak negative relationship between Cu and enzyme activity could only be found for phosphomonoesterase activity. The results show that soil physical–chemical properties (i.e., organic carbon, pH) are greater determinants of soil enzyme activity than increased soil Cu concentration at the Cu concentrations present in vineyard soils.  相似文献   

15.
The reasons why some cultivars of hot pepper (Capsicum annuum L.) accumulate low levels of Cd are poorly understood. We aimed to compare the characteristics of Cd uptake and translocation in low-Cd and high-Cd hot pepper cultivars by determining the subcellular locations and chemical forms of Cd, and its distribution among different plant organs. We conducted a hydroponic experiment to investigate the subcellular distribution and chemical forms of Cd in roots, stems, and leaves of a low-Cd (Yeshengchaotianjiao, YCT) and a high-Cd cultivar (Jinfuzaohuangjiao, JFZ). The results showed that the concentrations of Cd in almost all subcellular fractions of roots, and in all chemical forms in roots, were higher in YCT than in JFZ. Compared with YCT, JFZ had higher Cd concentrations in almost all subcellular fractions of stems and leaves, and higher Cd concentrations in almost all chemical forms in stems and leaves. Additionally, YCT had significantly higher total Cd accumulation but a lower Cd translocation rate compared with JFZ. In general, the results presented in this study revealed that root-to-shoot Cd translocation via the xylem is the key physiological processes determining the Cd accumulation level in stems and leaves of hot pepper plants. Immobilization of Cd by the cell walls of different organs is important in Cd detoxification and limiting the symplastic movement of Cd.  相似文献   

16.
Dong J  Wu F  Zhang G 《Chemosphere》2006,64(10):1659-1666
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.  相似文献   

17.
Soybean [Glycine max (L.) Merr.] cultivars Essex and Forrest that exhibit differences in ozone (O(3)) sensitivity were used in greenhouse experiments to investigate the role of leaf extracellular antioxidants in O(3) injury responses. Charcoal-filtered air and elevated O(3) conditions were used to assess genetic, leaf age, and O(3) effects. In both cultivars, the extracellular ascorbate pool consisted of 80-98% dehydroascorbic acid, the oxidized form of ascorbic acid (AA) that is not an antioxidant. For all combinations of genotype and O(3) treatments, extracellular AA levels were low (1-30nmolg(-1) FW) and represented 3-30% of the total antioxidant capacity. Total extracellular antioxidant capacity was twofold greater in Essex compared with Forrest, consistent with greater O(3) tolerance of Essex. The results suggest that extracellular antioxidant metabolites in addition to ascorbate contribute to detoxification of O(3) in soybean leaves and possibly affect plant sensitivity to O(3) injury.  相似文献   

18.
The effect of mercuric chloride (HgCl2) on the activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and its effect on glutathione (GSH) content were evaluated in different organs (liver, kidneys, and brain) of mice after administration at 0, 0.25, 0.5 and 1.0 mg/kg/day for 14 days. The uptake of mercury shows that the kidneys accumulated the highest levels of mercury compare to brain and liver. The enzyme levels varied in mercury treated organs compare to control. A dose dependent increase of antioxidant enzymes occurred in the liver and kidneys. The increase in enzyme activities correlated with highest mercury accumulation in the kidneys and liver. Mercury is known to generate reactive oxygen species (ROS) in vivo and in vitro, therefore, it is likely that enzyme activities increased to scavenge ROS levels produced as a result of mercury accumulation. Glutathione content increased in liver and kidneys of mercury treated mice compare to control. The results showed that the highest oral dose of mercury significantly increased antioxidant enzymes in kidneys and liver. The increased antioxidant enzymes enhance the antioxidant potential of the organs to reduce oxidative stress.  相似文献   

19.
Abstract

The effect of mercuric chloride (HgCl2) on the activities of catalase, Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and its effect on glutathione (GSH) content were evaluated in different organs (liver, kidneys, and brain) of mice after administration at 0, 0.25, 0.5 and 1.0 mg/kg/day for 14 days. The uptake of mercury shows that the kidneys accumulated the highest levels of mercury compare to brain and liver. The enzyme levels varied in mercury treated organs compare to control. A dose dependent increase of antioxidant enzymes occurred in the liver and kidneys. The increase in enzyme activities correlated with highest mercury accumulation in the kidneys and liver. Mercury is known to generate reactive oxygen species (ROS) in vivo and in vitro, therefore, it is likely that enzyme activities increased to scavenge ROS levels produced as a result of mercury accumulation. Glutathione content increased in liver and kidneys of mercury treated mice compare to control. The results showed that the highest oral dose of mercury significantly increased antioxidant enzymes in kidneys and liver. The increased antioxidant enzymes enhance the antioxidant potential of the organs to reduce oxidative stress.  相似文献   

20.
Arsenic (As) contamination in the environment has attracted considerable attention worldwide. The objective of the present study was to see the comparative effect of As species As(III) and As(V) on accumulation, biochemical responses, and gene expression analysis in Brassica juncea var. Pusa Jaganath (PJn). Hydroponically grown 14-day-old seedlings of B. juncea were treated with different concentrations of As(III) and As(V). Accumulation of total As increased with increasing concentration of both As species and exposure time, mainly in roots. Reduction in seed germination, root–shoot length, chlorophyll, and protein content were observed with increasing concentration and exposure time of both As species, being more in As(III)-treated leaves. PJn variety showed that antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) and stress-related parameters (cysteine, proline, and malondialdehyde (MDA)) were stimulated and allows plant to tolerate both As species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis in leaves showed significant changes in protein profile with more stringent effect with As(III) stress. Semiquantitative RT-PCR analysis showed regulation in expression of phytochelatin synthase (PCS), metallothionine-2 (MT-2), glutathione reductase (GR), and glutathione synthetase (GS) genes under both As(III) and As(V) stresses. Results suggested that accumulation and inhibition on physiological parameters differ according to the As species, while molecular and biochemical parameters showed a combinatorial type of tolerance mechanism against As(III) and As(V) stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号