首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Manure-based soil amendments (herein “amendments”) are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH4+) and nitrate (NO3?) concentrations every month, and GHG emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) every 7–14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO2 and N2O, and lower CH4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH4+ losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N2O emissions for all amendments. However, it did not affect CO2 or CH4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH4+ (69–96%), P (41–73%), and K (91–97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition.

Implications: The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37–74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.  相似文献   

2.
A source and process sampling study was conducted at a dry process Portland Cement production plant. The study was performed to determine the nature of the formation of a highly visable plume related to the kiln emissions. One aspect of the study focused on the source or point of NH3 within the production process. An extensive number of process solids from raw feeds to baghouse solids were collected and analyzed for NH4 +. Samples were analyzed for NH4 + both by washing the solids with 0.1 N H2SO4 and by collecting NH3 in impingers as it was evolved from heated solids. The results showed that NH4 + was present in many process samples and that the collection efficiency of NH4 + in the baghouse was related to baghouse temperature. The data also showed that NH3 was derived from the shale used in the raw feed at this cement production plant.  相似文献   

3.
Greenhouse gas (GHG) emissions from concentrated animal feeding operations vary by stage of production and management practices. The objective of this research was to study the effect of two dietary crude protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding. Manure characteristics and GHG emissions were measured from feedlot pen surfaces. Sixteen equal-sized feedlot pens (19?×?23 m) were used. Eight were bedded approximately twice a week with corn stover and the remaining eight feedlot pens were not bedded. Angus steers (n = 138) were blocked by live weights (lighter and heavier) with 7 to 10 animals per pen. The trial was a 2?×?2 factorial design with factors of two protein levels and two bedding types (bedding vs. non bedding), with four replicates. The study was conducted from June through September and consisted of four ?28-day periods. Manure from each pen was scrapped once every 28 days and composite manure samples from each pen were collected. Air samples from pen surfaces were sampled in Tedlar bags using a Vac-U-Chamber coupled with a portable wind tunnel and analyzed with a greenhouse gas gas chromatograph within 24 hr of sampling. The manure samples were analyzed for crude protein (CP), total nitrogen (TN), ammonia (NH3), total volatile fatty acid (TVFA), total carbon (TC), total phosphorus (TP), and potassium (K). The air samples were analyzed for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) concentrations. The concentration of TN was significantly higher (p < 0.05) in manure from pens with cattle fed the high protein diets. The volatile fatty acids (VFAs) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids concentrations were similar across both treatments. There were no significant differences in pen surface GHG emissions across manure management and dietary crude protein levels.

Implications: Livestock manure produces odor and emits GHGs (CO2, CH4, and N2O) at different stages of production and management practices that have significant environmental concerns. Thus, it is important to measure GHG contributions from different sources and develop appropriate mitigation strategies for minimizing GHG contribution from livestock production facilities. Two dietary protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding were studied. The results indicated that dietary protein levels and bedding vs. no bedding had very little effect on GHG emissions and manure composition under open feedlot conditions in North Dakota climatic conditions and management practices.  相似文献   

4.
Livestock production and the use of synthetic fertilizer are responsible for about half of the global emission of NH3. Depending on the animal category between 10 and 36% of the N in animal excreta is lost as NH3. The current annual NH3 emission in developing countries of 15 million ton N accounts for of the global emission from animal excreta. In addition, 7.2 million tons NH3N of synthetic N fertilizers are lost as NH3 in developing countries. This is 80% of the global NH3 emission from synthetic fertilizer's use. Along with human population increase and economic growth, livestock production in developing countries may even increase by a factor of 3 between now and 2025. The net result of rapid increase of livestock production combined with higher efficiency is an increase in NH3 emissions of only 60% from 15 to 24 million tons NH3N between 1990 and 2025 in developing countries. Livestock production is an important consumer of feedstuffs, mainly cereals, thereby inducing additional demand for synthetic fertilizers. Despite the projected major increase of synthetic fertilizer use from 42 to 106 million ton N between 1990 and 2025, the NH3 loss in developing countries may decrease if a shift towards other fertilizer types, that are less vulnerable to NH3 volatilization, is realized. According to the scenario, the total emission of NH3 associated with food production in developing countries will increase from 22 to 30 million ton N yr−1 between 1990 and 2025. Although the NH3 emission increases more slowly than food production, in particular, animal production may show geographic concentration in certain regions, which may lead to high local emission densities and associated environmental problems.  相似文献   

5.
Canopy leaching of nutrients and metals in a mountain spruce forest   总被引:1,自引:0,他引:1  
Precipitation and throughfall fluxes of major ions, nutrients (C, N, P), and metals (Al, Fe, Mn), and the chemical composition of litter fall and living plant tissue in Norway spruce stands (the Bohemian Forest; Czech Republic), were used to evaluate how microbial processes and decay of plant tissue in canopies influence canopy leaching (CL) of elements. Proton exchange for Mg2+, Ca2+, and K+ in decaying biomass and co-transport of Ca2+ and K+ out of plant cells with organic acid anions were the most likely processes contributing to CL of base cations. The CL of total P and N (and also NO3?) was minor. Important proportions of the N and P mineral forms were transformed to organic forms by microbial processes (primary and bacterial production), with the respective CL of ?13.9 and 16.4 mmol m?2 yr?1 for NH4+ and organic N, and ?0.33 and 0.22 mmol m?2 yr?1 for dissolved reactive P (DRP) and organic P. Most of particulate P and N in throughfall (~90%) originated from microbial DRP and NH4+ transformations, but particulate C mostly came from the fragmentation of plant tissue (58%). Among metals, CL was not observed for Al, was small for Fe (0.3 mmol m?2 yr?1), and greatest for Mn (0.9 mmol m?2 yr?1) due to leaching from decaying tissue by acidic precipitation.  相似文献   

6.
不同水生植物去除水体氮磷的效果   总被引:3,自引:0,他引:3  
为研究水生植物对污染河流的脱氮除磷效果,实验采用人工配置污水,对大薸、凤眼莲、慈菇、菖蒲、香蒲和水葱这6种水生植物去除氮磷的效果进行了实验研究。结果表明,所选植物都能较好地吸收水中的营养物质,对氨氮(NH4-N)和硝态氮(NO3-N)的去除率分别为93.71%~97.32%和76.69%~92.47%,对总磷(TP)的去除率为76.69%~92.47%,其中菖蒲对NH4-N的去除效果最好,慈菇对NO3-N的去除率最高,香蒲对TP的去除率最高。6种水生植物的氮、磷吸收贡献率分别占水质氮、磷去除率的11.71%~54.57%和17.61%~64.56%。不同种类水生植物对不同污染物的去除能力存在较大差异,因此,在实际应用时可针对污染物的种类来选择水生植物,也可考虑对水生植物之间进行搭配组合用以修复污染水体。  相似文献   

7.

A chamber study was conducted to evaluate the growth response and leaf nitrogen (N) status of four plant species exposed to continuous ammonia (NH3) for 12 weeks (wk). This was intended to evaluate appropriate plant species that could be used to trap discharged NH3 from the exhaust fans in poultry feeding operations before moving off-site. Two hundred and forty bare-root plants of four species (Juniperus virginiana (red cedar), Gleditsia triacanthos var. inermis (thornless honey locust), Populus sp. (hybrid poplar), and Phalaris arundinacea (reed canary grass) were transplanted into 4- or 8-L polyethylene pots and grown in four environmentally controlled chambers. Plants placed in two of the four chambers received continuous exposure to anhydrous NH3 at 4 to 5 ppm while plants in another two chambers received no NH3. In each of the four chambers, 2 to 4 plants per species received no fertilizer while the rest of the plants were fertilized with a 100 ppm solution containing 21% N, 7% phosphorus, and 7% potassium. The results showed that honey locust was the fastest-growing species. The superior growth of honey locust among all species was also supported by its total biomass, root, and root dry matter (DM) weights. For all species there was a trend for plants exposed to NH3 to have greater leaf DM than their non-exposed counterparts at 6 (43.0 vs. 30.8%; P = 0.09) and 12 wk (47.9 vs. 36.6%; P = 0.07), and significantly greater (P ≤ 0.05) leaf N content at 6 (6.44 vs. 3.67%) and 12 wk (7.05 vs. 3.51%) when exposed to NH3. Numerically greater leaf DM due to NH3 exposure was also consistently measured in poplar at both sampling periods. Hybrid poplar, as well as honey locust and reed canary grass, deposited 1.5 to 2-fold greater N in their leaves than red cedar tissues as a result of NH3 exposure compared to non-exposed plants. Regardless of the effect of NH3 on foliar color and damage score of the plants, the increase of foliar N content (g 100 g?1 of fresh foliage weight) after NH3 exposure at 6 and 12 wk was 0.45 and 0.87 for grass,1.25 and 1.34 for locust, and 2.67 and 6.09 for poplar. However, only honey locust likely benefited from ambient NH3 as indicated by its consistent leaf color quality and lower damage score, compared with other species that were adversely affected by atmospheric NH3.  相似文献   

8.
Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH4 was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH4 fluxes. Plant presence also decreased CH4 fluxes but favoured CO2 production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties.  相似文献   

9.
Here we present an uncertainty analysis of NH3 emissions from agricultural production systems based on a global NH3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH3 emission from agricultural systems is 27–38 (with a mean of 32) Tg NH3-N yr−1, N fertilizer use contributing 10–12 (11) Tg yr−1 and livestock production 16–27 (21) Tg yr−1. Most of the emissions from livestock production come from animal houses and storage systems (31–55%); smaller contributions come from the spreading of animal manure (23–38%) and grazing animals (17–37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH3 emission comprise four parameters (N excretion rates, NH3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.  相似文献   

10.
Substantial emission of ammonia (NH3) from animal houses and the related high local deposition of NH3-N are a threat to semi-natural nitrogen-deficient ecosystems situated near the NH3 source. In Denmark, there are regulations limiting the level of NH3 emission from livestock houses near N-deficient ecosystems that are likely to change due to nitrogen (N) enrichment caused by NH3 deposition. The models used for assessing NH3 emission from livestock production, therefore, need to be precise, as the regulation will affect both the nature of the ecosystem and the economy of the farmer. Therefore a study was carried out with the objective of validating the Danish model used to monitor NH3 transport, dispersion and deposition from and in the neighbourhood of a chicken farm. In the study we measured NH3 emission with standard flux measuring methods, NH3 concentrations at increasing distances from the chicken houses using passive diffusion samplers and deposition using 15N-enriched biomonitors and field plot studies. The dispersion and deposition of NH3 were modelled using the Danish OML-DEP model. It was also shown that model calculations clearly reflect the measured NH3 concentration and N deposition. Deposition of N measured by biomonitors clearly reflected the variation in NH3 concentrations and showed that deposition was not significantly different from zero (P < 0.05) at distances greater than 150–200 m from these chicken houses. Calculations confirmed this, as calculated N deposition 320 m away from the chicken farm was only marginally affected by the NH3 emission from the farm. There was agreement between calculated and measured deposition showing that the model gives true estimates of the deposition in the neighbourhood of a livestock house emitting NH3.  相似文献   

11.
The major ion and trace metal geochemistry of a septic system plume in a shallow sand aquifer was characterized to assess geochemical processes controlling the transport of nutrients and their release to a nearby wetland. The plume was generated from a 16-year-old tile bed, and is more than 60 m long, 40 m wide and 7 m thick. The groundwater pH at the site is near neutral, but up to 0.4 units lower in the plume core as a result of H+ generated from NH3 and DOC oxidation in the unsaturated zone. The plume can be divided into distinct redox zones, which show differences in nutrient mobility. Proximal to the tile bed, there is a shallow suboxic zone, with intermediate Eh values (>400 mV), low concentrations of dissolved oxygen (<1.0 mg/l), and elevated concentrations of Mn (1–3 mg/l) and nutrients (10–80 mg/l NO3–N, 1–15 mg/l NH3–N, 0.1–1.5 mg/l PO4–P, 6–13 mg/l dissolved organic carbon). At the base of the aquifer, there is a reduced zone (Eh<200 mV) with elevated concentrations of Fe (1–14 mg/l), PO4 and NH3, but negligible concentrations of NO3 (<0.01 mg/l N). Distal from the tile bed, the shallow groundwater is suboxic to oxic, and has elevated concentrations of NO3 and NH3, but negligible PO4. In the lower reduced zone, elevated concentrations of PO4 occur up to 60 m away. The release of groundwater containing even very low concentrations of PO4 (<0.02 mg/l P) can lead to the development of eutrophic conditions in surface water bodies. Geochemical calculations indicate that, in the Mn-rich zone, the groundwater is close to saturation or supersaturated with respect to hydroxyapatite, rhodochrosite, calcite and ferrihydrite. In the reduced zone, the groundwater is close to saturation or supersaturated with respect to hydroxyapatite, vivianite, calcite and siderite. Formation of these phases, or related phases, are likely limiting the concentrations of dissolved PO4, Fe and Mn and controlling the geochemical evolution of the plume.  相似文献   

12.
13.
This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH3) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH3 concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH3 passive dosi–tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH3 concentration h? 1 was reduced by distance from housing fans (P ≤ 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P ≤ 0.0005) and hybrid willow (3.41 vs. 3.02%; P ≤ 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P ≤ 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P ≤ 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM2.5(0.0054, 0.0054, 0.0005, and 0.0016 mg cm? 2; P ≤ 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm? 2, respectively; P ≤ 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM10 (0.0248 vs. 0.0036 mg cm? 2; P ≤ 0.0001) and PM> 10 (0.0033 vs. 0.0003 mg cm? 2; P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH3–N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.  相似文献   

14.
Ammonia volatilization from crop residues and frozen green manure crops   总被引:1,自引:0,他引:1  
Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter.Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5–16 percent of the N content of residues when placed on top of soil.Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH4+ that is not needed for their own growth is released and can easily emit as NH3 at the soil surface.The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH3–N to the national ammonia volatilization of the Netherlands, being more than 3 percent of the national emissions in 2005. This contribution should therefore be considered when focusing on the national ceilings for ammonia emissions.  相似文献   

15.
Li K  Gong Y  Song W  He G  Hu Y  Tian C  Liu X 《Chemosphere》2012,88(1):140-143
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers.  相似文献   

16.
Abstract

Annual applications of (NH4)2SO4 NH4NO3 and urea on a Solonetzic soil at 112 kg N/ha for 10 consecutive years reduced pH levels from 5.6 for the check to 4.4, 4.9 and 5.3, respectively for (NH4)2SO4, NH4NO3 and urea. (NH4)2SO4 generated twice as much exchange acidity as NH4NO3 and four times as much as urea. Net extractable cations leached from the Ap horizon closely approximated the amount of exchange acidity generated by (NH4)2SO4 and NH4NO3 fertilizers. The levels of soil extractable Al and Mn were greatly enhanced by (NH4)2SO4 as were plant contents. Similar acidifying effects to that produced by the (NH4)2SO4 occurred when NH4NO3 was applied at 300 kg N/ha annually for 12 consecutive years in another field experiment on the same soil. Liming samples of the field (NH4)2SO4 acidified soils in the greenhouse, significantly increased yields and lowered the Al and Mn contents of the plants to normal levels.  相似文献   

17.
To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ15N) in tropical Indian aerosols (PM10) collected from Chennai (13.04°N; 80.17°E) on day- and night-time basis in winter and summer 2007. We found high δ15N values (+15.7 to +31.2‰) of aerosol N (0.3–3.8 μg m?3), in which NH4+ is the major species (78%) with lesser contribution from NO3? (6%). Based on the comparison of δ15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH3 to NH4HSO4 and (NH4)2SO4 and the subsequent exchange reaction between NH3 and NH4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.  相似文献   

18.
Nitrogen fertility and abiotic stresses management in cotton crop: a review   总被引:1,自引:0,他引:1  
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.  相似文献   

19.
The current critical level for ammonia (CLENH3) in Europe is set at 8 μg NH3 m−3 as an annual average concentration. Recent evidence has shown specific effects of ammonia (NH3) on plant community composition (a true ecological effect) at much smaller concentrations. The methods used in setting a CLENH3 are reviewed, and the available evidence collated, in proposing a new CLENH3 for different types of vegetation. For lichens and bryophytes, we propose a new CLENH3 of 1 μg NH3 m−3 as a long-term (several year) average concentration; for higher plants, there is less evidence, but we propose a CLENH3 of 3 ± 1 μg NH3 m−3 for herbaceous species. There is insufficient evidence to provide a separate CLENH3 for forest trees, but the value of 3 ± 1 μg NH3 m−3 is likely to exceed the empirical critical load for N deposition for most forest ecosystems.  相似文献   

20.

Background, aim and scope

Australia is the largest producer of bauxite in the world, with an annual output of approximately 62 million metric dry tons in 2007. For every tonne of alumina, about 2 tonnes of highly alkaline and highly saline bauxite-processing residue are produced. In Western Australia, Alcoa World Alumina, Australia (Alcoa) produces approximately 15 MT of residue annually from its refineries (Kwinana, Pinjarra and Wagerup). The bauxite-processing residue sand (BRS) fraction represents the primary material for rehabilitating Alcoa’s residue disposal areas (RDAs). However, the inherently hostile characteristics (high alkalinity, high salinity and poor nutrient availability) of BRS pose severe limitations for establishing sustainable plant cover systems. Alcoa currently applies 2.7 t ha?1 of di-ammonium phosphate ((NH4)2HPO4; DAP)-based fertiliser as a part of rehabilitation of the outer residue sand embankments of its RDAs. Limited information on the behaviour of the dominant components of this inorganic fertiliser in highly alkaline BRS is currently available, despite the known effects of pH on ammonium (NH4) and phosphorus (P) behaviour. The aim of this study was to quantify the effects of pH on NH3 volatilisation and residual nitrogen (N) in BRS following DAP applications.

Methods

The sponge-trapping and KCl-extraction method was used for determining NH3 volatilisation from surface-applied DAP in samples of BRS collected from each of Alcoa’s three Western Australia Refineries (Kwinana, Pinjarra, Wagerup) under various pH conditions (pH 4, 7, 9 and 11). Following cessation of volatilisation, the residual N was extracted from BRS using 2 M KCl and concentrations of NH 4 + –N and NO 3 ? –N were determined by flow injection analysis.

Results

The quantities of NH3 volatilised increased dramatically as the pH increased from 4 to 11. Much of the N lost as NH3 (up to 95.2%) occurred within a short period (24 h to 7 days), particularly for the pH 9 and 11 treatments. Concentrations of residual NH 4 + –N recovered in DAP-treated BRS at the end of the experiment decreased with increasing pH. This finding was consistent with increasing loss of N via volatilisation as pH increased. The concentration of NO 3 ? –N was very low due to no nitrification in BRS.

Discussion

The pH was a key driver for NH3 volatilisation from DAP-treated BRS and primarily controlled N dynamics in BRS. Results indicate that NH4 not adsorbed by BRS was highly susceptible to volatilisation. The likely lack of nitrifying bacteria did not allow conversion of ammonium to nitrate, thereby further exacerbating the potential for loss via volatilisation

Conclusions

It was demonstrated that the pH is the key factor controlling the loss of inorganic N from BRS. Although volatilisation was considerably lower at pH 4, achieving this pH reduction in the field is not possible at present. Findings from this study highlight the need to better understand which forms of N fertiliser are most suitable for use in highly alkaline BRS.

Recommendation and perspectives

Although pH reduction is the most likely means of stopping NH3 volatilisation in BRS, it is economically and operationally unfeasible to add sufficient acidity for adequately lowering pH in the BRS for revegetation. More attention on forms of fertilisers more suitable to highly alkaline, microbially inert soil conditions appears to be warranted.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号