首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Environmental Science and Pollution Research - The water quality index is one of the prominent general indicators to assess and classify surface water quality, which plays a critical role in river...  相似文献   

2.
Storm runoff in afforested catchments at Llyn Brianne is acidic and Al-bearing. At baseflows, stream water is well-buffered with low Al levels. This paper presents the results of a study into how hydrological pathways account for these variations in stream-water chemistry. The investigation was carried out in the LI1 catchment; a 0.4-ha subcatchment covered by stagnohumic gley soils was monitored between October 1988 and September 1989. An instrumented hill-slope was established to identify the hydrological pathways that control the hydrochemistry of storm runoff draining from the subcatchment. Perched watertables developed in the surface horizons of the soil during storm episodes and produced lateral flow above the impeding subsoil. This near-surface flow path was responsible for generating acid, Al-rich storm runoff. Some water drained vertically through the soil profile into the underlying slope drift; seepage from groundwater in the drift sustained baseflows. Buffering reactions in the groundwater zone reduced the acidity and Al levels of baseflows. These hydrochemical characteristics are likely to be representative of other areas of stagnohumic gley soils, which cover 19% of the LI1 catchment: these soils may therefore provide a substantial source of acid, Al-bearing storm runoff in LI1 and similar afforested catchments.  相似文献   

3.

A good number of researchers investigated the impact of flow modification on hydrological, ecological, and geomorphological conditions in a river. A few works also focused on hydrological modification on wetland with some parameters but as far the knowledge is concerned, linking river flow modification to wetland hydrological and morphological transformation following an integrated modeling approach is often lacking. The current study aimed to explore the degree of hydrological alteration in the river and its effect on downstream riparian wetlands by adopting advanced modeling approaches. After damming, maximally 67 to 95% hydrological alteration was recorded for maximum, minimum, and average discharges. Wavelet transformation analysis figured out a strong power spectrum after 2012 (damming year). Due to attenuation of flow, the active inundation area was reduced by 66.2%. After damming, 524.03 km2 (48.9% of total pre-dam wetland) was completely obliterated. Hydrological strength (HS) modeling also reported areas under high HS declined by 14% after post-dam condition. Wetland hydrological security state (WSS) and HS matrix, a new approach, are used to explore wetland characteristics of inundation connectivity and hydrological security state. WSS was defined based on lateral hydrological connectivity. HS under critical and stress WWS zones deteriorated in the post-dam period. The morphological transformation was also well recognized showing an increase in area under the patch, edge, and a decrease in the area under the large core area. All these findings established a clear linkage between river flow modification and wetland transformation, and they provided a good clue for managing wetlands.

  相似文献   

4.
The increasing frequency of extreme events in large rivers may affect not only their flow, but also their water quality. In the present study, spatial and temporal changes in fluvial physico-chemical variables were analyzed in a mega-river delta during two extreme hydrological years (La Niña-El Niño) and related to potential explanatory factors. Basic water variables were evaluated in situ at 13 points (distant 2–35 km from each other) in watercourses of the Delta Biosphere Reserve (890 km2) in the Lower Paraná River (Argentina) in nine surveys (October 2008–July 2010) without meteorological tides. Samples for laboratory analyses were collected from each main river. Multivariate tests by permutations were applied. The period studied was influenced by a drought, within a long period dominated by low flows combined with dry weather and wildfires, and a large (10 years of recurrence) and prolonged (7 months) flood. The hydrological phase, followed by the season and the hydrological year (according to the ENSO event) were the principal explanatory factors of the main water quality changes, whereas the drainage sub-basin and the fluvial environment (river or stream) were secondary explanatory factors. During the drought period, conductivity, turbidity, and associated variables (e.g., major ions, silicon, and iron concentrations) were maximal, whereas real color was minimal. In the overbanking flood phase, pH and dissolved oxygen concentration were minimal, whereas real color was maximal. Dissolved oxygen saturation was also low in the receding flood phase and total major ion load doubled after the arrival of the overbanking stage. The water quality of these watercourses may be affected by the combination of several influences, such as the Paraná River flow, the pulses with sediments and solutes from the Bermejo River, the export of the Delta floodplain properties mainly by the flood, the season, and the saline tributaries to the Lower Paraná River. The high influence of the hydrology of this large river on the Delta fluvial water quality emphasizes the relevance of changes in its flow regime in recent decades, such as the seasonality attenuation. Considering that the effects of extreme events differ among and within fluvial systems, specific ecohydrological evaluations and powerful appropriate statistics are key tools to gain knowledge on these systems and to provide bases for suitable management measures in a scenario of climate change and increasing human alterations and demands.  相似文献   

5.
Exploring how water quality and land use shape the benthic macroinvertebrate community composition is of widespread interest in biodiversity conservation and environmental management. In this study, we investigated the structures of benthic macroinvertebrate assemblages and their environmental controls in terms of water quality and riparian land use in the Jinshui River, China. We carried out three campaigns including wet season (August 2009), dry season (November 2009), and normal season (April 2010) based on the hydrological regime in Jinshui basin. The result showed that macroinvertebrate assemblage variations were better explained by water quality factors than land use based on variance partitioning procedure. The land use of 2 km upstream from the sampling sites had explained more variation than that of the whole riparian zone in upstream catchment on macroinvertebrate community, and land use of 2 km upstream also had more interactions with water quality. Canonical correspondence analysis (CCA) indicated that the elements or nutrient of magnesium (Mn), selenium (Se), strontium (Sr), silicon (Si), dissolved inorganic nitrogen (DN), sulfur (S), total organic carbon (TOC), and total nitrogen (TN) in water exhibited a strong relationship with macroinvertebrate assemblages. However, the variance in water quality explained by land use was lower than that explained by water quality in rivers using redundancy analysis. Our study suggested that proximate factors (i.e., water quality) were more important to interpret the macroinvertebrate community compared to ultimate factors (i.e., land use) for macroinvertebrate assemblages in river system.  相似文献   

6.
Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.  相似文献   

7.
Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.  相似文献   

8.
When river water quality fluctuates over relatively short periods of time with respect to the sampling frequency, the collection of grab samples may be inappropriate for characterising average water quality. This paper presents the results of a water quality monitoring study carried out on a stretch of the river Lambro (northern Italy) dominated by a periodically overloaded sewage treatment works (STW) located near its upstream end. Water quality was strongly influenced by a pronounced diurnal cycle in pollutant loads caused by the regular emission of untreated waste water during periods of high domestic flow (daytime). Two different sampling techniques were employed: grab sampling and 24-h composite sampling using automatic samplers. Samples were collected at the plant overflow and at several sites along the river and analysed for two common ingredients of household detergents, linear alkylbenzene sulphonate (LAS) and boron (B) and for routine water quality variables. The results obtained show that: (1) The diurnal variability of point-source-derived chemical concentrations in the river downstream of the undersized STW increased with increasing removal efficiency in sewage treatment. (2) The shape of the diurnal concentration signal remained relatively intact for a considerable distance downstream of the STW for several water quality variables, suggesting that hydrodynamic dispersion plays a relatively minor role in controlling concentration patterns in this river. (3) In-stream degradation of LAS was consistent with first order kinetics with a rate constant of 0.05-0.06 h(-1). (4) Grab sampling is a relatively inefficient methodology for capturing mean concentrations for rivers subjected to highly variable loads, especially when it is restricted to office hours. The inefficiency of grab sampling is more marked for substances (e.g. LAS) which are effectively removed during sewage treatment than for substances which are not. (5) For LAS, diurnal variability in the concentration signal decreases with distance downstream, making grab sampling an increasingly reliable methodology for estimating mean concentrations. (6) 24-h composite sampling is an efficient way of eliminating the effect of diurnal variations in load strength.  相似文献   

9.
The measurement of water scarcity: Defining a meaningful indicator   总被引:1,自引:0,他引:1  
Metrics of water scarcity and stress have evolved over the last three decades from simple threshold indicators to holistic measures characterising human environments and freshwater sustainability. Metrics commonly estimate renewable freshwater resources using mean annual river runoff, which masks hydrological variability, and quantify subjectively socio-economic conditions characterising adaptive capacity. There is a marked absence of research evaluating whether these metrics of water scarcity are meaningful. We argue that measurement of water scarcity (1) be redefined physically in terms of the freshwater storage required to address imbalances in intra- and inter-annual fluxes of freshwater supply and demand; (2) abandons subjective quantifications of human environments and (3) be used to inform participatory decision-making processes that explore a wide range of options for addressing freshwater storage requirements beyond dams that include use of renewable groundwater, soil water and trading in virtual water. Further, we outline a conceptual framework redefining water scarcity in terms of freshwater storage.  相似文献   

10.
Climate change effects on river flow to the Baltic Sea   总被引:1,自引:0,他引:1  
Graham LP 《Ambio》2004,33(4-5):235-241
River flow to the Baltic Sea originates under a range of different climate regimes in a drainage basin covering some 1,600,000 km2. Changes to the climate in the Baltic Basin will not only affect the total amount of freshwater flowing into the sea, but also the distribution of the origin of these flows. Using hydrological modeling, the effects of future climate change on river runoff to the Baltic Sea have been analyzed. Four different climate change scenarios from the Swedish Regional Climate Modelling Programme (SWECLIM) were used. The resulting change to total mean annual river flow to the Baltic Sea ranges from -2% to +15% of present-day flow according to the different climate scenarios. The magnitude of changes within different subregions of the basin varies considerably, with the most severe mean annual changes ranging from -30% to +40%. However, common to all of the scenarios evaluated is a general trend of reduced river flow from the south of the Baltic Basin together with increased river flow from the north.  相似文献   

11.
There has been considerable progress in developing treatment systems for point sources of minewater pollution in recent years; however, there remains a knowledge gap in the characterisation and remediation of diffuse minewater sources. Data are presented from the River Gaunless catchment, a historically heavily coal mined catchment in the northeast of England. Instream iron (Fe) loadings were monitored alongside loadings arising from point minewater discharges over a 12-month period to assess the dynamic importance of diffuse sources of minewater pollution. In low flow, diffuse sources account for around 50% of instream loading, a proportion which increases to 98% in high flow conditions. The low flow sources appear to be dominated by direct discharge of contaminated groundwater to surface waters in lower reaches of the catchment. In high flow, resuspended Fe-rich sediments, which are both naturally occurring and derived from historic mining, become the dominant diffuse source of Fe in the water column.  相似文献   

12.
There is currently uncertainty on the persistence of active pharmaceutical ingredients (APIs) and on their depletion mechanisms in natural surface waters such as rivers, and hence predictions of their fate are often poor. In this study, a beta-adrenergic receptor, propranolol hydrochloride, was selected as a model API to explore the relative significance of direct phototransformation as a potential removal process of hydrophilic APIs in rivers. Phototransformation kinetics of propranolol was measured under simulated solar irradiation in the laboratory, which were then converted to the kinetics applicable in UK and US rivers. The effects of light intensity, light penetration, river size and flow were examined. The extrapolated phototransformation half-lives were applied in the river catchment models of GREAT-ER and PhATE. Results demonstrated that direct phototransformation significantly reduced the predicted environmental concentrations of propranolol in the water phase. Predicted reductions of mean concentrations in the River Aire (UK) were 27% in summer and 3% in winter; and for the US rivers simulated, reductions were 28-68% in summer and 11-41% in winter. The highest reductions were predicted for long rivers with low turbidity and low flow conditions.  相似文献   

13.
Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe   总被引:3,自引:0,他引:3  
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.  相似文献   

14.
A neural-fuzzy approach to classify the ecological status in surface waters   总被引:2,自引:0,他引:2  
A methodology based on a hybrid approach that combines fuzzy inference systems and artificial neural networks has been used to classify ecological status in surface waters. This methodology has been proposed to deal efficiently with the non-linearity and highly subjective nature of variables involved in this serious problem. Ecological status has been assessed with biological, hydro-morphological, and physicochemical indicators. A data set collected from 378 sampling sites in the Ebro river basin has been used to train and validate the hybrid model. Up to 97.6% of sampling sites have been correctly classified with neural-fuzzy models. Such performance resulted very competitive when compared with other classification algorithms. With non-parametric classification-regression trees and probabilistic neural networks, the predictive capacities were 90.7% and 97.0%, respectively. The proposed methodology can support decision-makers in evaluation and classification of ecological status, as required by the EU Water Framework Directive.  相似文献   

15.
To compare catchments of possible acidified waters in Britain an extensive database was compiled for nearly 600 catchments of lakes and streams for which chemical data were available. Information on the database included map-derived data, pollutant deposition estimates and hydrological characteristics. To stratify the catchment database a randomly selected subset of 328 catchments was used to derive eight classes of catchments using the classification program TWINSPAN. Several classifications were generated by this method using an increasing number of catchment parameters. TWINSPAN classes were defined on the basis of some catchment parameters (indicators) but were shown to be associated with other variables. A general linear model (GLM) analysis of the available chemical data was used to test the different classifications. A TWINSPAN classification which excluded soil and geology characteristics gave the best GLM model because soil and geology types were poorly correlated with other catchment parameters. However, because of the recognized importance of soils and geology in acidification processes, these parameters were introduced into the GLM model as separate GLM classes. The resulting three-class model (TWINSPAN class, soil type, geology type) proved superior to both the one-class model and to two-class models which included either soil or geology. It was demonstrated that the TWINSPAN classes were associated with particular geographical areas and particular monitoring programmes. The TWINSPAN classification was used to evaluate a set of catchments selected as long-term monitoring sites for Britain. In general, the set covered a wide range of catchment types as defined by the classification. It was possible to identify minor shortfalls in classes of catchment selected and suggest possible additions to the sampling programme. Whilst the classification procedure has been applied to possible acidified waters, the method is of general relevance to all catchments and waters of more diverse nature.  相似文献   

16.
Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows.  相似文献   

17.
Environmental Science and Pollution Research - The increase of affected river reaches by reservoirs has drastically disturbed the original hydrological conditions, and subsequently influenced the...  相似文献   

18.

Introduction  

Mediterranean rivers are characterized by a high flow variability, which is strongly influenced by the seasonal rainfall. When water scarcity periods occur, water flow, and dilution capacity of the river is reduced, increasing the potential environmental risk of pollutants. On the other hand, floods contribute to remobilization of pollutants from sediments. Contamination levels in Mediterranean rivers are frequently higher than in other European river basins, including pollution by pharmaceutical residues. Little attention has been paid to the transport behavior of emerging contaminants in surface waters once they are discharged from WWTP into a river. In this context, this work aimed to relate presence and fate of emerging contaminants with hydrological conditions of a typical Mediterranean River (Llobregat, NE Spain).  相似文献   

19.
Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.  相似文献   

20.

Algal blooms usually occur in semi-closed water bodies such as lakes or estuaries; however, it has occurred frequently in the mid-downstream of the Han River (MSHR) in China since the 1990s. We made a comparative analysis of the hydrological conditions and identified the hydrological condition thresholds that induce algal blooms. From the hydrodynamic point of view, the changes and characteristics of the hydrological conditions in the MSHR were analyzed. Furthermore, the influence on the risk of algal blooms under different design water transfer schemes for the middle route of the South-to-North Water Diversion Project (SNWDP) was studied. The results indicated that (1) the flow in the MSHR less than 900 m3/s and water level in the Yangtze River higher than 14 m provided a suitable hydrological environment for diatoms multiply. (2) The flow of the MSHR showed a downtrend, while the water level of the Yangtze River showed an uptrend. There were variations in hydrological processes. Through specific IHA index analysis, the fact of flow reduction in the MSHR was demonstrated, and further indicated that algal bloom outbreak was in low flow period. (3) The water transfer in the middle route of SNWDP affected the risk probability of algal blooms. The more the amount of water transfer, the greater the risk probability of algal blooms. It was the Water Diversion Project from Yangtze River to Han River (WDPYHR) that replenished flow of the MSHR and was conducive to the prevention and control of algal bloom risk.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号