首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract

Temuco is one of the most highly wood-smoke-polluted cities in the world. Its population in 2004 was 340,000 inhabitants with 1587 annual deaths, of which 24% were due to cardiovascular and 11% to respiratory causes. For hospital admissions, cardiovascular diseases represented 6% and respiratory diseases 13%. Emergency room visits for acute respiratory infections represented 28%. The objective of the study presented here was to determine the relationship between air pollution from particulate matter less than or equal to 10 µm in aerodynamic diameter (PM10; mostly PM2.5, or particulate matter <2.5 µm in aerodynamic diameter) and health effects measured as the daily number of deaths, hospital admissions, and emergency room visits for cardiovascular, respiratory, and acute respiratory infection (ARI) diseases. The Air Pollution Health Effects European Approach (APHEA2) protocol was followed, and a multivariate Poisson regression model was fitted, controlling for trend, seasonality, and confounders for Temuco during 1998–2006. The results show that PM10 had a significant association with daily mortality and morbidity, with the elderly (population >65 yr of age) being the group that presented the greatest risk. The relative risk for respiratory causes, with an increase of 100 µg/m3 of PM10, was 1.163 with a 95% confidence interval (CI) of 1.057–1.279 for mortality, 1.137 (CI 1.096–1.178) for hospital admissions, and 1.162 for ARI (CI 1.144–1.181). There is evidence in Temuco of positive relationships between ambient particulate levels and mortality, hospital admissions, and ARI for cardiovascular and respiratory diseases. These results are consistent with those of comparable studies in other similar cities where wood smoke is the most important air pollution problem.  相似文献   

2.
Guangzhou is a metropolitan in south China with unique pollutants and geographic location. Unlike those in western countries and the rest of China, the appearance of haze in Guangzhou is often (about 278 days per year on average of 4 years). Little is known about the influence of these hazes on health. In this study, we investigated whether short-term exposures to haze and air pollution are associated with hospital admissions in Guangzhou. The relationships between haze, air pollution, and daily hospital admissions during 2008–2011 were assessed using generalized additive model. Studies were categorized by gender, age, season, lag, and disease category. In haze episodes, an increase in air pollutant emissions corresponded to 3.46 (95 % CI, 1.67, 5.27) increase in excessive risk (ER) of total hospital admissions at lag 1, 11.42 (95 % CI, 4.32, 18.99) and 11.57 (95 % CI, 4.38, 19.26) increases in ERs of cardiovascular illnesses at lags 2 and 4 days, respectively. As to total hospital admissions, an increase in NO2 was associated with a 0.73 (95 % CI, 0.11, 1.35) and a 0.28 (95 % CI, 0.11, 0.46) increases in ERs at lag 5 and lag 05, respectively. For respiratory illnesses, increases in NO2 was associated with a 1.94 (95 % CI, 0.50, 3.40) increase in ER at lag 0, especially among chronic obstructive pulmonary disease. Haze (at lag1) and air pollution (for NO2 at lag 5 and for SO2 at lag3) both presented more drastic effects on the 19 to 64 years old and in the females. Together, we demonstrated that haze pollution was associated with total and cardiovascular illnesses. NO2 was the sole pollutant with the largest risk of hospital admissions for total and respiratory diseases in both single- and multi-pollutant models.  相似文献   

3.
We assessed confounding of associations between short-term effects of air pollution and health outcomes by influenza using Hong Kong mortality and hospitalization data for 1996–2002.Three measures of influenza were defined: (i) intensity: weekly proportion of positive influenza viruses, (ii) epidemic: weekly number of positive influenza viruses ≥4% of the annual number for ≥2 consecutive weeks, and (iii) predominance: an epidemic period with co-circulation of respiratory syncytial virus <2% of the annual positive isolates for ≥2 consecutive weeks. We examined effects of influenza on associations between nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter with aerodynamic diameter ≤10 μm (PM10) and ozone (O3) and health outcomes including all natural causes mortality, cardiorespiratory mortality and hospitalization. Generalized additive Poisson regression model with natural cubic splines was fitted to control for time-varying covariates to estimate air pollution health effects. Confounding with influenza was assessed using an absolute difference of >0.1% between unadjusted and adjusted excess risks (ER%).Without adjustment, pollutants were associated with positive ER% for all health outcomes except asthma and stroke hospitalization with SO2 and stroke hospitalization with O3. Following adjustment, changes in ER% for all pollutants were <0.1% for all natural causes mortality, but >0.1% for mortality from stroke with NO2 and SO2, cardiac or heart disease with NO2, PM10 and O3, lower respiratory infections with NO2 and O3 and mortality from chronic obstructive pulmonary disease with all pollutants. Changes >0.1% were seen for acute respiratory disease hospitalization with NO2, SO2 and O3 and acute lower respiratory infections hospitalization with PM10. Generally, influenza does not confound the observed associations of air pollutants with all natural causes mortality and cardiovascular hospitalization, but for some pollutants and subgroups of cardiorespiratory mortality and respiratory hospitalization there was evidence to suggest confounding by influenza.  相似文献   

4.
ABSTRACT

Recent evidence has implicated the fine fraction of particulate as the major contributor to the increase in mortality and morbidity related to particulate ambient levels. We therefore evaluated the impact of daily variation of ambient PM2.5 and other pollutants on the number of daily respiratory-related emergency visits (REVs) to a large pediatric hospital of Santiago, Chile. The study was conducted from February 1995 to August 1996. Four monitoring stations from the network of Santiago provided air pollution data. The PM2.5 24-hr average ranged from 10 to 111 μg/m3 during September to April (warm months) and from 10 to 156 μg/m3 during May to August (cold months). Other contaminants (ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2)) were, in general, low during the study period. The increase in REVs was significantly related to PM10 and PM2.5 ambient levels, with the relationship between PM2.5 levels and the number of REVs the stronger. During the cold months, an increase of 45 ìg/m3 in the PM2.5 24-hr average was related to a 2.7% increase in the number of REVs (95% CI, 1.1–4.4%) with a two-day lag, and to an increase of 6.7% (95% CI, 1.7–12.0%) in the number of visits for pneumonia with a three-day lag. SO2 and NO2 were also related to REVs. We conclude that urban air pollutant mixture, particularly fine particulates, adversely affect the respiratory health of children residing in Santiago.  相似文献   

5.
Recent epidemiological and toxicological studies have shown associations between particulate matter and human health. However, the estimates of adverse health effects are inconsistent across many countries and areas. The stratification and interaction models were employed within the context of the generalized additive Poisson regression equation to examine the acute effects of fine particles on respiratory health and to explore the possible joint modification of temperature, humidity, and season in Beijing, China, for the period 2004–2009. The results revealed that the respiratory health damage threshold of the PM2.5 concentration was mainly within the range of 20–60 μg/m3, and the adverse effect of excessively high PM2.5 concentration maintained a stable level. In the most serious case, an increase of 10 μg/m3 PM2.5 results in an elevation of 4.60 % (95 % CI 3.84–4.60 %) and 4.48 % (95 % CI 3.53–5.41 %) with a lag of 3 days, values far higher than the average level of 0.69 % (95 % CI 0.54–0.85 %) and 1.32 % (95 % CI 1.02–1.61 %) for respiratory mortality and morbidity, respectively. There were strong seasonal patterns of adverse effects with the seasonal variation of temperature and humidity. The growth rates of respiratory mortality and morbidity were highest in winter. And, they increased 1.4 and 1.8 times in winter, greater than in the full year as PM2.5 increased 10 μg/m3.  相似文献   

6.
Although the growths of ambient pollutants have been attracting public concern, the characteristic of the associations between air pollutants and mortality remains elusive. Time series analysis with a generalized additive model was performed to estimate the associations between ambient air pollutants and mortality outcomes in Shenzhen City for the period of 2012–2014. The results showed that nitrogen dioxide (NO2)-induced excess risks (ER) of total non-accidental mortality and cardiovascular mortality were significantly increased (6.05% (95% CI 3.38%, 8.78%); 6.88% (95% CI 2.98%, 10.93%), respectively) in interquartile range (IQR) increase analysis. Also, these associations were strengthened after adjusting for other pollutants. Moreover, similar associations were estimated for sulfur dioxide (SO2), particulate matter with an aerodynamic diameter of <10 μm (PM10), and total non-accidental mortality. There were significant higher ERs of associations between PM10 and mortality for men than women; while there were significant higher ERs of associations between PM10/NO2 and mortality for elders (65 or elder) than youngers (64 or younger). Season analyses showed that associations between NO2 and total non-accidental mortality were more pronounced in hot seasons than in warm seasons. Taken together, NO2 was positively associated with total non-accidental mortality and cardiovascular mortality in Shenzhen even when the concentrations were below the ambient air quality standard. Policy measures should aim at reducing residents’ exposure to anthropogenic NO2 emissions.  相似文献   

7.
Previous studies have found associations between traffic-related air pollution and asthma exacerbation in children, where exacerbations were measured according to emergency department visits and hospital admissions. Fewer studies have been undertaken that look at asthma exacerbations in a less severe primary care setting. Therefore, the authors sought to examine the associations between childhood asthma exacerbations, measured as acute visits to a primary care setting, and vehicular-traffic measures in a population of children aged 18 and under in the metropolitan Atlanta area. Statistical tests for differences of mean monthly visits for members with traffic measures above the median compared with below the median and for the upper quartile compared with the lower quartile were conducted. We also compared the odds of having one or more visits in a month for those who lived closer to a major roadway were compared with those who lived farther (greater than 300 m) from a major roadway. Poisson general linear modeling was used to determine associations between daily levels of acute visits for childhood asthma and traffic-related pollutants (zinc, EC [elemental carbon], and PM10 and PM2.5 [particulate matter with an aerodynamic diameter of ≤10 and ≤2.5 μm, respectively]) for different levels of traffic and distance measures. This analysis found that both larger traffic volumes and smaller distances to the nearest major roadway were positively and significantly associated with larger numbers of childhood asthma visits, when compared with less traffic and larger distances. Our findings point to motor vehicle traffic as an important contributor to childhood asthma exacerbations.
Implications: Previous studies have found associations between traffic-related air pollution and asthma exacerbation in children. However, these studies were mainly conducted in emergency department or hospital admission settings; little is known regarding less acute health effects. This analysis of the association between vehicular traffic measures and childhood asthma in a primary care setting suggests that motor vehicle traffic is a contributor to less acute asthma episodes in children. The present analysis of traffic-related air pollutants and childhood asthma were less conclusive, likely due to methods limitations outlined in the paper. The implication is that further evidence of adverse respiratory health effects in children due to motor vehicle traffic can be found in a primary care setting and similar studies should be considered.  相似文献   

8.
Controlling the confounding factors on cardiovascular diseases, such as long-time trend, calendar effect, and meteorological factors, a generalized additive model (GAM) was used to investigate the short-term effects of air pollutants (PM10, SO2, and NO2) on daily cardiovascular admissions from March 1st to May 31st during 2007 to 2011 in Lanzhou, a heavily polluted city in western China. The influences of air pollutants were examined with different lag structures, and the potential effect modification by dust storm in spring was also investigated. Significant associations were found between air pollutants and hospital admissions for cardiovascular diseases both on dust event days and non-dust event days in spring. Air pollutants had lag effects on different age and gender groups. Relative risks (RRs) and their 95% confidence intervals (CIs) associated with a 10 μg/m3 increase were 1.14 (1.04~1.26) on lag1 for PM10, 1.31 (1.21~1.51) on lag01 for SO2, and 1.96 (1.49~2.57) on lag02 for NO2 on dust days. Stronger effects of air pollutants were observed for females and the elderly (≥60 years). Our analysis concluded that the effects of air pollutants on cardiovascular admissions on dust days were significantly stronger than non-dust days. The current study strengthens the evidence of effects of air pollution on health and dust-exacerbated cardiovascular admissions in Lanzhou.  相似文献   

9.
Dhaka, the capital of Bangladesh, is among the most polluted cities in the world. This research evaluates seasonal patterns, day-of-week patterns, spatial gradients, and trends in PM2.5 (<2.5 µm in aerodynamic diameter), PM10 (<10 µm in aerodynamic diameter), and gaseous pollutants concentrations (SO2, NO2, CO, and O3) monitored in Dhaka from 2013 to 2017. It expands on past work by considering multiple monitoring sites and air pollutants. Except for ozone, the average concentrations of these pollutants showed strong seasonal variation, with maximum during winter and minimum during monsoon, with the pollution concentration of PM2.5 and PM10 being roughly five- to sixfold higher during winter versus monsoon. Our comparisons of the pollutant concentrations with Bangladesh NAAQS and U.S. NAAQS limits analysis indicate particulate matter (PM2.5 and PM10) as the air pollutants of greatest concern, as they frequently exceeded the Bangladesh NAAQS and U.S. NAAQS, especially during nonmonsoon time. In contrast, gaseous pollutants reported far fewer exceedances throughout the study period. During the study period, the highest number of exceedances of NAAQS limits in Dhaka City (Darus-Salam site) were found for PM2.5 (72% of total study days), followed by PM10 (40% of total study days), O3 (1.7% of total study days), SO2 (0.38% of total study days), and CO (0.25% of total study days). The trend analyses results showed statistically significant positive slopes over time for SO2 (5.6 ppb yr?1, 95% confidence interval [CI]: 0.7, 10.5) and CO (0.32 ppm yr?1, 95% CI: 0.01, 0.56), which suggest increase in brick kilns operation and high-sulfur diesel use. Though statistically nonsignificant annual decreasing slopes for PM2.5 (?4.6 µg/m3 yr?1, 95% CI: ?12.7, 3.6) and PM10 (?2.7 µg/m3 yr?1, 95% CI: ?7.9, 2.5) were observed during this study period, the PM2.5 concentration is still too high (~ 82.0 µg/m3) and can cause severe impact on human health.

Implications: This study revealed key insights into air quality challenges across Dhaka, Bangladesh, indicating particulate matter (PM) as Dhaka’s most serious air pollutant threat to human health. The results of these analyses indicate that there is a need for immediate further investigations, and action based on those investigations, including the conduct local epidemiological PM exposure-human health effects studies for this city, in order to determine the most public health effective interventions.  相似文献   


10.
In the present study, a modified approach was adopted to quantify the assimilative capacity (i.e., the maximum emission an area can take without violating the permissible pollutant standards) of a major industrial cluster (Manali, India) and to assess the effectiveness of adopted air pollution control measures at the region. Seasonal analysis of assimilative capacity was carried out corresponding to critical, high, medium, and low pollution levels to know the best and worst conditions for industrial operations. Bottom-up approach was employed to quantify sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (aerodynamic diameter <10 μm; PM10) emissions at a fine spatial resolution of 500 × 500 m2 in Manali industrial cluster. AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), an U.S. Environmental Protection Agency (EPA) regulatory model, was used for estimating assimilative capacity. Results indicated that 22.8 tonnes/day of SO2, 7.8 tonnes/day of NO2, and 7.1 tonnes/day of PM10 were emitted from the industries of Manali. The estimated assimilative capacities for SO2, NO2, and PM10 were found to be 16.05, 17.36, and 19.78 tonnes/day, respectively. It was observed that the current SO2 emissions were exceeding the estimated safe load by 6.7 tonnes/day, whereas PM10 and NO2 were within the safe limits. Seasonal analysis of assimilative capacity showed that post-monsoon had the lowest load-carrying capacity, followed by winter, summer, and monsoon seasons, and the allowable SO2 emissions during post-monsoon and winter seasons were found to be 35% and 26% lower, respectively, when compared with monsoon season.

Implications: The authors present a modified approach for quantitative estimation of assimilative capacity of a critically polluted Indian industrial cluster. The authors developed a geo-coded fine-resolution PM10, NO2, and SO2 emission inventory for Manali industrial area and further quantitatively estimated its season-wise assimilative capacities corresponding to various pollution levels. This quantitative representation of assimilative capacity (in terms of emissions), when compared with routine qualitative representation, provides better data for quantifying carrying capacity of an area. This information helps policy makers and regulatory authorities to develop an effective mitigation plan for air pollution abatement.  相似文献   


11.
Abstract

In Asia, limited studies have been published on the association between daily mortality and gaseous pollutants of nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Our previous studies in Wuhan, China, demonstrated long-term air pollution effects. However, no study has been conducted to determine mortality effects of air pollution in this region. This study was to determine the acute mortality effects of the gaseous pollutants in Wuhan, a city with 7.5 million permanent residents during the period from 2000 to 2004. There are approximately 4.5 million residents in Wuhan who live in the city’s core area of 201 km2, where air pollution levels are highest, and pollution ranges are wider than the majority of the cities in the published literature. We used the generalized additive model to analyze pollution, mortality, and covariate data. We found consistent NO2effects on mortality with the strongest effects on the same day. Every 10-μg/m3increase in NO2daily concentration on the same day was associated with an increase in nonaccidental (1.43%; 95% confidence interval [CI]: 0.87–1.99%), cardiovascular (1.65%; 95% CI: 0.87–2.45%), stroke (1.49%; 95% CI: 0.56–2.43%), cardiac (1.77%; 95% CI: 0.44–3.12%), respiratory (2.23%; 95% CI: 0.52–3.96%), and cardiopulmonary mortality (1.60%; 95% CI: 0.85– 2.35%). These effects were stronger among the elderly than among the young. Formal examination of exposure-response curves suggests no-threshold linear relationships between daily mortality and NO2, where the NO2concentrations ranged from 19.2 to 127.4 μg/m3. SO2and O3were not associated with daily mortality. The exposure-response relationships demonstrated heterogeneity, with some curves showing nonlinear relationships for SO2and O3. We conclude that there is consistent evidence of acute effects of NO2on mortality and suggest that a no-threshold linear relationship exists between NO2and mortality.  相似文献   

12.
The characteristics of water-soluble inorganic ions (WSIIs) during a winter period in a suburb of Xi'an, China, were investigated. Our results show that the total mass concentration of the dominant WSIIs (8) was 91.27 µg m–3, accounting for 50.1% of the total mass concentration of PM2.5 (particulates with a size of 2.5 µm or less). Secondary inorganic aerosols (SO42?, NO3? and NH4+) were the most abundant ions, accounting for up to 95.12% of the total ions. By using the anion and cation equivalence ratio method, PM2.5 was shown to have weak alkalinity, and the chemical forms of WSIIs were mainly (NH4)2SO4 and NH4NO3. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) suggested that larger proportions of SO42? and NO3? were formed by gas-phase SO2 and NO2 in the sampling site. Ratio analysis also indicated that anthropogenic sources significantly contributed to WSII pollution. Among the anthropogenic sources, fixed pollution sources were found to be dominant over mobile sources.  相似文献   

13.
Wu  Tingting  Ma  Yuan  Wu  Xuan  Bai  Ming  Peng  Yu  Cai  Weiting  Wang  Yongxiang  Zhao  Jing  Zhang  Zheng 《Environmental science and pollution research international》2019,26(15):15262-15272

Ambient particulate matter (PM) pollution has been linked to elevated mortality, especially from cardiovascular diseases. However, evidence on the effects of particulate matter pollution on cardiovascular mortality is still limited in Lanzhou, China. This research aimed to examine the associations of daily mean concentrations of ambient air pollutants (PM2.5, PMC, and PM10) and cardiovascular mortality due to overall and cause-specific diseases in Lanzhou. Data representing daily cardiovascular mortality rates, meteorological factors (daily average temperature, daily average humidity, and atmospheric pressure), and air pollutants (PM2.5, PM10, SO2, NO2) were collected from January 1, 2014, to December 31, 2017, in Lanzhou. A quasi-Poisson regression model combined with a distributed lag non-linear model (DLNM) was used to estimate the associations. Stratified analyses were also performed by different cause-specific diseases, including cerebrovascular disease (CD), ischemic heart disease (IHD), heart rhythm disturbances (HRD), and heart failure (HF). The results showed that elevated concentration of PM2.5, PMC, and PM10 had different effects on mortality of different cardiovascular diseases. Only cerebrovascular disease showed a significant positive association with elevated PM2.5. Positive associations were identified between PMC and daily mortality rates from total cardiovascular diseases, cerebrovascular diseases, and ischemic heart diseases. Besides, increased concentration of PM10 was correlated with increased death of cerebrovascular diseases and ischemic heart diseases. For cerebrovascular disease, each 10 μg/m3 increase in PM2.5 at lag4 was associated with increments of 1.22% (95% CI 0.11–2.35%). The largest significant effects for PMC on cardiovascular diseases and ischemic heart diseases were both observed at lag0, and a 10 μg/m3 increment in concentration of PMC was associated with 0.47% (95% CI 0.06–0.88%) and 0.85% (95% CI 0.18–1.52%) increases in cardiovascular mortality and ischemic heart diseases. In addition, it exhibited a lag effect on cerebrovascular mortality as well, which was most significant at lag6d, and an increase of 10 μg/m3 in PMC was associated with a 0.76% (95% CI 0.16–1.37%) increase in cerebrovascular mortality. The estimates of percentage change in daily mortality rates per 10 μg/m3 increase in PM10 were 0.52% (95% CI 0.05–1.02%) for cerebrovascular disease at lag6 and 0.53% (95% CI 0.01–1.05%) for ischemic heart disease at lag0, respectively. Our study suggests that elevated concentration of atmospheric PM (PM2.5, PMC, and PM10) in Lanzhou is associated with increased mortality of cardiovascular diseases and that the health effect of elevated concentration of PM2.5 is more significant than that of PMC and PM10.

  相似文献   

14.
Abstract

A comprehensive, systematic synthesis was conducted of daily time-series studies of air pollution and mortality from around the world. Estimates of effect sizes were extracted from 109 studies, from single- and multipollutant models, and by cause of death, age, and season. Random effects pooled estimates of excess all-cause mortality (single-pollutant models) associated with a change in pollutant concentration equal to the mean value among a representative group of cities were 2.0% (95% CI 1.5-2.4%) per 31.3 μg/m3 particulate matter (PM) of median diameter <10 μm (PM10); 1.7% (1.2-2.2%) per 1.1 ppm CO; 2.8% (2.1-3.5%) per 24.0 ppb NO2; 1.6% (1.1-2.0%) per 31.2 ppb O3; and 0.9% (0.7-1.2%) per 9.4 ppb SO2 (daily maximum concentration for O3, daily average for others). Effect sizes were generally reduced in multipollutant models, but remained significantly different from zero for PM10 and SO2. Larger effect sizes were observed for respiratory mortality for all pollutants except O3. Heterogeneity among studies was partially accounted for by differences in variability of pollutant concentrations, and results were robust to alternative approaches to selecting estimates from the pool of available candidates. This synthesis leaves little doubt that acute air pollution exposure is a significant contributor to mortality.  相似文献   

15.
Atmospheric particulate matter (PM) is hypothesized to increase the risk of myocardial infarction (MI). However, the epidemiological evidence is inconsistent. We identified 33 studies with more than 4 million MI patients and applied meta-analysis and meta-regression to assess the available evidence. Twenty-five studies presented the effects of the PM level on hospitalization for MI patients, while eight studies showed the effects on mortality. An increase in PM10 was associated with hospitalization and mortality in myocardial infarction patients (RR per 10 μg/m3?=?1.011, 95 % CI 1.006–1.016; RR per 10 μg/m3?=?1.008, 95 % CI 1.004–1.012, respectively); PM2.5 also increased the risk of hospitalization and mortality in MI patients (RR per 10 μg/m3?=?1.024, 95 % CI 1.007–1.041 for hospitalization and RR per 10 μg/m3?=?1.012, 95 % CI 1.010–1.015 for mortality). The results of the cumulative meta-analysis indicated that PM10 and PM2.5 were associated with myocardial infarctionwith the addition of new studies each year. In conclusion, short-term exposure to high PM10 and PM2.5 levels revealed to increase risk of hospitalization and mortality for myocardial infarction. Policy support of pollution control and individual protection was strongly recommended.  相似文献   

16.
ABSTRACT

Generalized additive models were used to analyze the time series of daily hospital admissions for cardiovascular and cerebrovascular diseases over the period of 19871995 in three major metropolitan areas—Cook County, IL; Los Angeles County, CA; and Maricopa County, AZ— in the United States. In Cook and Maricopa Counties, admissions information was only available for the elderly (ages 65 and over), while in Los Angeles County, admissions information was available for all ages. In Cook County, daily monitoring information was available on PM10, CO, SO2, NO2, and O3. In Los Angeles and Maricopa Counties, monitoring information was available daily on the gases, and information on PM10 was available every sixth day. In Los Angeles County, information on PM25 was also available every sixth day. In Cook and Los Angeles Counties, associations were found between each pollutant, with the exception of O3, and admissions for cardiovascular disease, with the gases showing the strongest associations. In two-pollutant models with PM and one of the gases, the effect of the gases remained stable, while the effect of PM became unstable and insignificant. In Maricopa County, the gases, with the exception of O3, were weakly associated with hospital admissions for cardiovascular disease, while PM was not. In two-pollutant models with two of CO, SO2, and NO2, the pattern of results is heterogeneous in the three counties. In all three counties, only weak evidence of any association between air pollution and cere-brovascular admissions was found.  相似文献   

17.
Previous studies have explored the association between air pollution levels and adverse birth outcomes such as lower birth weight. Existing literature suggests an association, although results across studies are not consistent. Additional research is needed to confirm the effect, investigate the exposure window of importance, and distinguish which pollutants cause harm.

We assessed the association between ambient pollutant concentrations and term birth weight for 1,548,904 births in TX from 1998 to 2004. Assignment of prenatal exposure to air pollutants was based on maternal county of residence at the time of delivery. Pollutants examined included particulate matter with aerodynamic diameter ≤10 and ≤2.5 µm (PM10 and PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). We applied a linear model with birth weight as a continuous variable. The model was adjusted for known risk factors and region. We assessed pollutant effects by trimester to identify biological exposure window of concern, and explored interaction due to race/ethnicity.

An interquartile increase in ambient pollutant concentrations of SO2 and O3 was associated with a 4.99-g (95% confidence interval [CI], 1.87–8.11) and 2.72-g (95% CI, 1.11–4.33) decrease in birth weight, respectively. Lower birth weight was associated with exposure to O3 in the first and second trimester, whereas results were not significant for other pollutants by trimester. A positive association was exhibited for PM2.5 in the first trimester. Effects estimates for PM10 and PM2.5 were inconsistent across race/ethnic groups.

Current ambient air pollution levels may be increasing the risk of lower birth weight for some pollutants. These risks may be increased for certain racial/ethnic groups. Additional research including consideration of improved methodology is needed to investigate these findings. Future studies should examine the influence of residual confounding.

Implications: This is one of the most comprehensive studies examining criteria air pollutants and lower birth weight in Texas. Our findings confirm results found previously for adverse effects of the air pollutant SO2 on lower birth weight. Results from our study suggest that adverse pregnancy outcomes such as lower birth weight can occur even while maintaining air pollution levels below regulatory standards. Future studies should incorporate the assessment of differential pollutant exposure as well as effect estimates by race/ethnicity with individual and community-level social factors in order to enhance our understanding of how physical, social, and host factors influence birth outcomes.

Supplemental Materials: Supplementary information relating to characteristics of excluded births, distribution of air pollutant monitors by pollutant, and correlation coefficients of the air pollutants is available in the publisher's online edition of the Journal of the Air & Waste Management Association.  相似文献   

18.
Bursa is one of the largest cities of Turkey and it hosts 17 organized industrial zones. Parallel to the increase in population, rapidly growing energy consumption, and increased numbers of transport vehicles have impacts on the air quality of the city. In this study, regularly calibrated automatic samplers were employed to get the levels of air pollution in Bursa. The concentrations of CH4 and N-CH4 as well as the major air pollutants including PM10, PM2.5, NO, NO2, NOx, SO2, CO, and O3, were determined for 2016 and 2017 calendar years. Their levels were 1641.62?±?718.25, 33.11?±?5.45, 42.10?±?10.09, 26.41?±?9.01, 19.47?±?16.51, 46.73?±?16.56, 66.23?±?32.265, 7.60?±?3.43, 659.397?±?192.73, and 51.92?±?25.63 µg/m3 for 2016, respectively. Except for O3, seasonal concentrations were higher in winter and autumn for both years. O3, CO, and SO2 had never exceeded the limit values specified in the regulations yet PM10, PM2.5, and NO2 had violated the limits in some days. The ratios of CO/NOx, SO2/NOx, and PM2.5/PM10 were examined to characterize the emission sources. Generally, domestic and industrial emissions were dominated in the fall and winter seasons, yet traffic emissions were effective in spring and summer seasons. As a result of the correlation process between Ox and NOx, it was concluded that the most important source of Ox concentrations in winter was NOx and O3 was in summer.  相似文献   

19.
BackgroundCurrent standards for fine particulates and nitrogen dioxide are under revision. Patients with cardiovascular disease have been identified as the largest group which need to be protected from effects of urban air pollution.MethodsWe sought to estimate associations between indicators of urban air pollution and daily mortality using time series of daily TSP, PM10, PM2.5, NO2, SO2, O3 and nontrauma deaths in Vienna (Austria) 2000–2004. We used polynomial distributed lag analysis adjusted for seasonality, daily temperature, relative humidity, atmospheric pressure and incidence of influenza as registered by sentinels.ResultsAll three particulate measures and NO2 were associated with mortality from all causes and from ischemic heart disease and COPD at all ages and in the elderly. The magnitude of the effect was largest for PM2.5 and NO2. Best predictor of mortality increase lagged 0–7 days was PM2.5 (for ischemic heart disease and COPD) and NO2 (for other heart disease and all causes). Total mortality increase, lagged 0–14 days, per 10 μg m−3 was 2.6% for PM2.5 and 2.9% for NO2, mainly due to cardiopulmonary and cerebrovascular causes.ConclusionAcute and subacute lethal effects of urban air pollution are predicted by PM2.5 and NO2 increase even at relatively low levels of these pollutants. This is consistent with results on hospital admissions and the lack of a threshold. While harvesting (reduction of mortality after short increase due to premature deaths of most sensitive persons) seems to be of minor importance, deaths accumulate during 14 days after an increase of air pollutants. The limit values for PM2.5 and NO2 proposed for 2010 in the European Union are unable to prevent serious health effects.  相似文献   

20.
The motorcycle taxi drivers of Bangkok have been heavily exposed to high concentrations of PM10 (particulate matter with an aerodynamic diameter ≤10 μm), and the impact of this on their lungs has been neither documented nor studied. This study examines the association between exposure to PM10 and lung function decline among motorcycle taxi drivers. A cross-sectional study was conducted in Bangkok between two groups: a subject group of motorcycle taxi drivers and control group of enclosed vehicle taxi drivers. The findings of the Thailand Pollution Control Department were used to estimate the annual ambient PM10 concentration levels in the metropolis. Pulmonary functions of motorcycle taxi drivers and enclosed vehicle taxi drivers were measured and compared using the Mann-Whitney test. Multiple linear regression analysis was applied to estimate the effects of PM10 exposure on the lung function of motorcycle taxi drivers. A total of 1283 motorcycle taxi drivers and 600 taxi drivers were investigated. The mean forced expiratory volume in 1 sec/forced vital capacity (FEV1/FVC) of the motorcycle taxi drivers was significantly lower than that of the taxi drivers (P < 0.001). The mean FEV1/FVC of motorcycle taxi drivers exposed to ≥50 µg/m3 PM10 was statistically lower (?2.82%; 95% confidence interval [CI]: ?4.54% to ?1.09%) and the mean % vital capacity (%VC) of those exposed to 40–49.9 µg/m3 PM10 was statistically lower than that of motorcycle taxi drivers exposed to <30 µg/m3 PM10 (?3.33%; 95% CI: ?5.79% to ?0.87%). Motorcycle taxi drivers were directly exposed to air pollution in their working environment. As a result, their lung function might decrease more than that of enclosed vehicle taxi drivers. With the possible exposure to ≥50 µg/m3 PM10, the vehicular emission standards should be vigorously enforced. Further investigation is warranted to clarify the effect of lung dysfunction on the work and lifestyle of motorcycle taxi drivers.

Implications: Motorcycle taxi drivers are directly exposed to air pollution in their work environment; therefore, their lung function might decrease more than that of enclosed vehicle taxi drivers, especially when exposed to ≥50 µg/m3 PM10. World Health Organization (WHO) vehicular emission standards should be recognized and eventually enforced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号