首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several organic compounds of high molecular weight present in soil interact with selenium and may act as active binding agents affecting its availability in soil, and, consequently, selenium uptake by plants. This study is aimed at investigating the effects of polysaccharides on selenium speciation in soil and on selenium absorption by Lactuca sativa L. plants. Three-week-old seedlings were transplanted into pots filled with soil, and sodium selenite at rates of 1.5 and 5mgSekg(-1) of soil, or sodium selenate at a rate of 1.5mgSekg(-1) of soil were applied. Carboxymethylcellulose (CMC) was added to the soil at rates of 0, 3 and 30mgkg(-1) of soil. After 48 and 110d from transplanting plants were harvested, separated into root and shoot, and fresh and dry matter weights were recorded. Total selenium was determined in both soil and plant samples. A sequential extraction was used to investigate the different Se oxidation states and assess the availability of Se in soil after the final harvesting. Both selenite and selenate were absorbed by roots, but plants amended with Se(VI+) showed higher selenium concentration than plants amended with Se(IV+). Selenite appears to be less mobile than selenate both in soil and plants. The addition of carboxymethylcellulose to soil decreased the amount of selenium absorbed by plants. CMC interacted with Se, making it less mobile as evidenced by the increase in the insoluble fractions. The insoluble Se forms in soil may represent environmental Se sinks potentially available for plants if the substrate is re-used for subsequent growth cycles and selenium species are mobilized as a result of biological and chemical processes.  相似文献   

2.
Environmental Science and Pollution Research - Selenite and selenate are two main selenium (Se) forms absorbed by plants. The comparative effects of selenite and/or selenate on Se uptake and...  相似文献   

3.
The effect of soil properties on trace element (TE) extraction by the Fish Creek willow cultivar was assessed in a 4-month greenhouse experiment with two contrasted soils and two mycorrhizal treatments (Rhizophagus irregularis and natives). Aboveground tissues represented more than 82 % of the willow biomass and were the major sink for TE. Cadmium and Zn were concentrated in leaves, while As, Cu, Ni, and Pb were mostly found in roots. Willow bioconcentration ratios were below 0.20 for As, Cu, Ni, and Pb and reached 10.0 for Cd and 1.97 for Zn. More significant differences in willow biomass, TE concentrations, and contents were recorded between soil types than between mycorrhizal treatments. A slight significant increase in Cu extraction by willow in symbiosis with Rhizophagus irregularis was observed and was linked to increased shoot biomass. Significant regression models between TE in willow and soil properties were found in leaves (As, Ni), shoots (As, Cd, Cu, Ni), and roots (As, Cu, Pb). Most of the explanation was shared between soil water-soluble TE and fertility variables, indicating that TE phytoextraction is related to soil properties. Managing interactions between TE and major nutrients in soil appeared as a key to improve TE phytoextraction by willows.  相似文献   

4.
The reasons why some cultivars of hot pepper (Capsicum annuum L.) accumulate low levels of Cd are poorly understood. We aimed to compare the characteristics of Cd uptake and translocation in low-Cd and high-Cd hot pepper cultivars by determining the subcellular locations and chemical forms of Cd, and its distribution among different plant organs. We conducted a hydroponic experiment to investigate the subcellular distribution and chemical forms of Cd in roots, stems, and leaves of a low-Cd (Yeshengchaotianjiao, YCT) and a high-Cd cultivar (Jinfuzaohuangjiao, JFZ). The results showed that the concentrations of Cd in almost all subcellular fractions of roots, and in all chemical forms in roots, were higher in YCT than in JFZ. Compared with YCT, JFZ had higher Cd concentrations in almost all subcellular fractions of stems and leaves, and higher Cd concentrations in almost all chemical forms in stems and leaves. Additionally, YCT had significantly higher total Cd accumulation but a lower Cd translocation rate compared with JFZ. In general, the results presented in this study revealed that root-to-shoot Cd translocation via the xylem is the key physiological processes determining the Cd accumulation level in stems and leaves of hot pepper plants. Immobilization of Cd by the cell walls of different organs is important in Cd detoxification and limiting the symplastic movement of Cd.  相似文献   

5.
Metabolic responses of weeping willows to selenate and selenite   总被引:2,自引:0,他引:2  
Goal, Scope and Background Selenium (Se) is one of the most widely distributed elements of the earth’s crust at low concentrations. The extensive use of Se-containing chemicals due to anthropogenic activities has increased the ecological risk to environmental compartments. Plants, under unfavorable environmental conditions, often increase the formation of reactive oxygen species (ROS), and consequently plant antioxidant enzymatic systems have been proposed to be important in plant stress tolerance. The goal of this study was to find out the metabolic responses of plants to Se, to provide quantitative information whether exogenous Se has a beneficial role in plants, and to investigate the potential of vegetation management of Se for potential phytoremediation. Material and Methods Pre-rooted plants of weeping willows (Salix babylonica L.) were grown hydroponically in growth chambers and treated with Na2SeO4 or Na2SeO3 at 24.0 ± 1°C for 168 h. Five different treatment concentrations were used, ranging from 0.44 to 8.72 mg Se/L for the treatments exposed to SeO42− and from 0.50 to 10.0 mg Se/L for the treatments exposed to SeO32−, respectively. Transpiration rates, soluble protein contents and antioxidative enzyme activities of the plants were monitored to evaluate toxicity from exogenous Se exposure. At the end of the study, total Se in the hydroponic solution was analyzed by hydride generation-atomic fluorescence spectrometry (HG-AFS). Results Both chemical forms of Se at low concentrations showed growth-promoting effects on plants. A significant decrease of transpiration rates and of soluble protein contents of plants was observed at higher Se concentrations after 168 h of exposure. Measurable change of superoxide dismutases (SOD) activity in leaves was only detected under high Se treatments. Catalase (CAT) activity was significantly affected by the Se application. Slight change of peroxidase (POD) activity was measured in all treatments, whereas significant inhibition of POD activity was detected for the plants exposed to SeO32− of 10.0 mg Se/L. Se-induced stress appeared in all treatments, thus resulting in measurable increase of glutathione peroxidase (GSH-Px) activity of the plants. Although both chemical forms of Se were taken up by weeping willows efficiently, their uptake rates were different. Discussion Of all measured parameters, POD and CAT activities in leaves were noted the most sensitive indicator for the plants exposed to SeO42− and SeO32−, respectively. Deleterious effects on plant physiological functions due to Se application were not observed over 168 h of exposure. This is largely due to the fact that well-established antioxidant enzymatic systems in plants and higher activities of GSH-Px largely reduced the negative effects on plants; SeO32− caused much more severe stress to plants than SeO42− at higher Se application rates. The uptake mechanisms between the two chemical species were quite different. Conclusions Neither visible toxic symptoms nor metabolic lesions were observed at low concentrations of Se, probably due to the effective established enzymatic systems in weeping willows. All selected parameters for toxicity determination were significantly correlated to Se application, but metabolic responses of plants to SeO42− and SeO32− were quite different. GSH-Px in leaves was probably the principle enzyme responsible for stress reduction from Se exposure. Due to their different chemical properties, weeping willows showed a faster uptake rate for SeO42− than for SeO32−. Recommendations Exogenous Se has a beneficial role in plants and vegetation management of Se is a potential remediation strategy in cleaning up Se-contaminated sites. Further investigation on the biochemical mechanism of Se metabolism will provide insight to the specific interactions between Se and plants on the molecular level. Perspectives Weeping willow has a sound potential for phytoremediation of Se-contaminated sediment and groundwater because the tree is not only tolerant to Se but also uptakes chemical species from the environment.  相似文献   

6.
BACKGROUND: Organotins have been used world-wide as antifoulants in ship paints. Repeatedly, severe effects on aquatic species have resulted. The use of organotins for this purpose was ruled out, and dumping of contaminated harbor sludge into the sea was prohibited. Land-based dumping is seen as an alternative. OBJECTIVE: This study investigates sorption, uptake and translocation of tributyltin (TBT) to willow trees in order to evaluate phytoremediation as treatment option. The study considers the influence of pH on the plant uptake of organotins. EXPERIMENTAL SET-UP: Chemicals investigated were the weak base tributyltin chloride (TBTCl) and the neutral tributyltin hydride (TBTH). Organotins were extracted from solution and plant material with toluene, and analyzed as tin by AAS with graphite oven. The pH in solution varied from pH 4 to pH 7. The sorption to living and dead roots, stems and leaves was measured in shaking experiments. The uptake into intact trees was measured at nominal levels of 1 and 10 mg TBT/l for TBTH and TBTCl at low and high pH. RESULTS: The sorption to roots and leaves dropped for dead tissue, but did not vary much with pH. The sorption to stems increased for dead stems and with pH. The solubility of TBTCl in water was below 10 mg/l and lowest at pH 4. Concentrations of TBTCl and TBTH in solutions with trees dropped rapidly to low values. Highest TBT contents in trees were found in roots and lower stems. The concentrations followed the concentrations in solution. The pH had only a small effect on the plant uptake of TBTCl, and no effect on the uptake of TBTH. No effective translocation to higher stems or leaves was found. DISCUSSION: An ion trap mechanism that accumulates the weak base TBTCl in the xylem sap of plants and leads to upward translocation could not be detected. Neither TBTCl at low or high pH, nor the neutral lipophilic chemical TBTH, were translocated effectively to leaves. The TBT+ cation sorbed strongly to plant tissue. The exact mechanism for the strong sorption of the cation is unknown, but similar effects have been observed for algae, liposomes and isolated biomembranes. CONCLUSIONS: Both the uptake of the neutral TBTH and the uptake of the neutral molecule form of TBTCl into willows was as is to be expected from theory. The cation TBT+ showed an unexpected behavior which has been observed before. No ion trap occurs, and the phytoextraction of TBT is not feasible. OUTLOOK: Planting trees, or other appropriate vegetation, could have a beneficial remediation effect by aeration of the TBT-contaminated soil or sludge. In a follow-up paper, the toxicity of TBT to willow trees will be described.  相似文献   

7.

Background, aim, and scope  

Selenium is a trace metalloid of global environmental concern. The boundary among its essentiality, deficiency, and toxicity is narrow and mainly depends on the chemical forms and concentrations in which this element occurs. Different plant species—including Brassica juncea—have been shown to play a significant role in Se removal from soil as well as water bodies. Furthermore, the interactions between such plants, showing natural capabilities of metal uptake and their rhizospheric microbial communities, might be exploited to increase both Se scavenging and vegetable biomass production in order to improve the whole phytoextraction efficiency. The aim of the present study was to evaluate the capability of selenite removal of B. juncea grown in hydroponic conditions on artificially spiked effluents. To optimize phytoextraction efficiency, interactions between B. juncea and rhizobacteria were designedly elicited.  相似文献   

8.

Selenium (Se) is an essential metalloid element for mammals. Nonetheless, both deficiency and excess of Se in the environment are associated with several diseases in animals and humans. Here, we investigated the interaction of Se, supplied as selenate (Se+6) and selenite (Se+4), with phosphorus (P) and sulfur (S) in a weathered tropical soil and their effects on growth and Se accumulation in Leucaena leucocephala (Lam.) de Wit. The P-Se interaction effects on L. leucocephala growth differed between the Se forms (selenate and selenite) supplied in the soil. Selenate was prejudicial to plants grown in the soil with low P dose, while selenite was harmful to plants grown in soil with high P dose. The decreasing soil S dose increased the toxic effect of Se in L. leucocephala plants. Se tissue concentration and total Se accumulation in L. leucocephala shoot were higher with selenate supply in the soil when compared with selenite. Therefore, selenite proved to be less phytoavailable in the weathered tropical soil and, at the same time, more toxic to L. leucocephala plants than selenate. Thus, it is expected that L. leucocephala plants are more efficient to phytoextract and accumulate Se as selenate than Se as selenite from weathered tropical soils, for either strategy of phytoremediation (decontamination of Se-polluted soils) or purposes of biofortification for animal feed (fertilization of Se-poor soils).

  相似文献   

9.
Dieldrin is a hydrophobic organochlorine insecticide that is persistent in the environment. The fate and transport of dieldrin in trees is important both in the context of potential remediation, as well as food chain impacts through dieldrin transport to shoots and leaves. Experiments were conducted to measure the degree of dieldrin partitioning to plant tissue and the potential for biodegradation of dieldrin in the microbe rich tree rhizosphere. Dieldrin was analyzed in water and plant tissue using headspace solid-phase microextraction (SPME) coupled with gas chromatography. Poplar and willow saplings planted in soil and watered with 10 microgl(-1) dieldrin for up to 9 months showed no adverse effects due to dieldrin exposure and no dieldrin was observed in plant shoots with a method detection limit (MDL) of 7 ngg(-1). One-week hydroponic tests of poplar saplings exposed to aqueous dieldrin also showed no detection of dieldrin in shoots, with an average of 66% of the dieldrin partitioned to the plant roots and an overall mass balance recovery of 76% in the plant-water system. The root concentration factor (RCF) was found to be 30+/-3 ml water g(-1) root. Biodegradation of dieldrin was not observed in an aqueous batch bioreactor containing 8 microgl(-1) dieldrin, nutrients and bacteria from the root zone of a poplar sapling that had been exposed to dieldrin for 9 months. These results show that planting trees is likely to be safe and potentially useful at sites containing low-levels of dieldrin in groundwater.  相似文献   

10.
Even plants classified as 'nonaccumulators' can sequester concentrations of sodium selenate, sodium selenite, selenocystine and selenomethionine that can strongly influence insect development and survival. These forms of selenium (Se), tested in diet-incorporation bioassays, proved toxic to larvae of a generalist insect herbivore at relatively low levels. Sodium selenite was the most toxic form tested against Spodoptera exigua (Hübner), with an LC(50) of 9.14 microg g(-1) wet wt (21.11 microg g(-1) dry wt). Selenocystine was intermediate with an LC(50) of 15.2 microg g(-1) wet wt. The least toxic forms, sodium selenate and selenomethionine, had LC(50)s below 50 microg g(-1) dry wt, the upper level for tissues of plants classified as nonaccumulators. Ingestion of some forms of Se also affected growth and development. Increasing concentrations of sodium selenate and sodium selenite decreased pupal weight and added significantly to the time needed for development to the pupal and adult stages. The time required to complete the larval stage increased by over 25% and the time from egg to adult emergence was extended by 22% to nearly 30%. Selenocystine and selenomethionine did not significantly increase developmental times, even at concentrations that killed 90% or more of the test populations. Analyses of relative growth rate, relative growth index, and an analysis of covariance technique for measuring growth indicated that the form of Se affected growth rates, growth inhibition responses of the larvae, and toxicological effects. Thus, quantity and the form of Se accumulating in plants grown on Se-contaminated sites are likely to influence the population dynamics of insect herbivores. The implications of these results for the ecology of contaminated sites are discussed.  相似文献   

11.
Phytotoxicity of Cyanide to Weeping Willow Trees   总被引:3,自引:0,他引:3  
Background Cyanide is found predominantly in industrial effluents generated by metallurgical operations. It is an extremely toxic compound, so that problems and catastrophic accidents have recently occurred all around the globe. The goal of this study was to determine the toxicity of cyanide to a Chinese willow species, and to determine the removal capacity. Methods The toxicity of potassium cyanide (KCN) to weeping willow trees (Salix babylonica L.) was tested. The normalized, relative transpiration of the plants was used to determine the phytotoxicity of cyanide. The cyanide removal capacity of weeping willows was also determined. Results and Discussion In hydroponic solution, no chlorosis of leaves and only a small reduction in normalized relative transpiration was observed when weeping willows were exposed to low doses of cyanide (0.93 mg CN/L). Severe signs of toxicity were found for the treatment groups exposed to higher doses of cyanide (9.3 mg CN/L). Weeping willows grown in sandy soils survived the entire period (216 hours) without any toxic effect when irrigated with low doses of cyanide (3.72 mg CN/L). High doses of cyanide (18.6 mg CN/L) in irrigation water were fatal for the weeping willows within 216 hours. EC50 values for a 50% inhibition of the transpiration of the trees were estimated to be between 3.27 and 8.23 mg CN/L, depending on the duration of the exposure. Conclusions The results obtained for the Chinese willow species Salix babylonica were very similar to those obtained for the European species S. viminalis in earlier studies. Phytotoxic effects were only found at high doses of cyanide. A large proportion of applied cyanide was removed from the contaminated media in the presence of weeping willows. This gives rise to the conclusion that the metabolism of cyanide by weeping willows is possible. Recommendations and Outlook Cyanide elimination with trees seems to be a feasible option for cleaning soils and water contaminated with cyanide. A full-scale treatment has been installed in Denmark. For phytoremediation projects in China, weeping willow could be a suitable species. The tree can tolerate and remove cyanide, and it is a native Chinese species. Besides, the tree is of outstanding beauty and is planted as a common park tree in many parts of the world.  相似文献   

12.
Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved (75)Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of (75)Se over the range 80-180 mg SO(4) liter(-1). When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.  相似文献   

13.
This study developed a seven-compartment model for predicting the fate of selenium (Se) in an aquatic environment containing a water-sediment boundary. Speciation of Se in water-sediment microcosms under microaerobic conditions was measured to evaluate first-order kinetics of Se transportation and transformation. The microcosm consisted of a 10-ml solution containing 1mM soluble Se as selenate (Se6+) or selenite (Se4+) and 8 g wet sediment that was free from Se contamination, sampled from the Senri, Yamato, or Yodo Rivers in Osaka, Japan. Stepwise reaction coefficients describing transportation and transformation were determined using an inverse method on this model which includes: selenate (Se(W)6+) and selenite (Se(W)4+) in ponded water; selenate (Se(S)6+) and selenite (Se(S)4+), elemental Se (Se0), organic Se (Se2-) in sediment; and gaseous Se (DMSe). During this 1-month experiment, soluble Se was transported from ponded water to the sediment and Se was transformed sequentially to other Se species through biochemical reactions. Experimental and kinetic analyses indicated quantitatively that the Yamato River microcosm, with its high organic matter content, had a high adsorption rate of soluble Se. The Yodo River microcosm had a low adsorption rate for Se6+ and a low Se reduction rate. The Senri River microcosm had an apparent high volatilization rate of DMSe. The model developed in this study is extremely useful for predicting fate of Se in aquatic environment in the field.  相似文献   

14.
Fritioff A  Greger M 《Chemosphere》2006,63(2):220-227
A better understanding of metal uptake and translocation by aquatic plants can be used to enhance the performance of constructed wetland systems for stormwater treatment. Specifically, this study examines whether the uptake of Zn, Cu, Cd, and Pb by Potamogeton natans is via the leaves, stems, or roots, and whether there is translocation from organs of uptake to other plant parts. Competition between the metals at uptake and at the level of the cell wall-bound part of the metals accumulated in stem and leaf tissue was also examined. The results show that Zn, Cu, Cd, and Pb were taken up by the leaves, stems, and roots, with the highest accumulation found in the roots. At the elevated metal concentrations common in stormwater the uptake of Cu, but not of Zn, Cd, or Pb, by the roots was somewhat limited at uptake due to competition with other metals. Between 24% and 59% of the metal content was bound to the cell walls of the plant. Except in the case of Pb, the cell wall-bound fraction was generally smaller in stems than in leaves. No translocation of the metals to other parts of the plant was found, except for Cd which was translocated from leaf to stem and vice versa. Dispersion of metals from sediment to water through P. natans is therefore unlikely.  相似文献   

15.
Evaporation basins (or ponds) are the most commonly used facilities for disposal of selenium-laden saline agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley, California. However concerns remain for potential risk from selenium (Se) toxicity to water fowl in these evaporation basins. In this study, we examined the chemical status of Se in both waters and sediments in two currently operating evaporation pond facilities in the Tulare Lake Drainage District. Some of the saline ponds have been colonized by brine-shrimp (Artemia), which have been harvested since 2001. We evaluated Se concentration and speciation, including selenate [Se(VI)], selenite [Se(IV)], and organic Se [org-Se or Se(-II)] in waters and sediment extracts, and fractionation (soluble, adsorbed, organic matter (OM)-associated, and Se(0) and other resistant forms) in sediments and organic-rich surface detrital layers from the decay of algal blooms. Selenium in ponds without vascular plants exhibited similar behavior to wetlands with vascular plant present, indicating that similar Se transformation processes and mechanisms had resulted in Se immobilization and an increase of reduced Se species [Se(IV), org-Se, and Se(0)] from Se(VI)-dominated input waters. Selenium concentrations in most pond waters were significantly lower than the influent drainage water. This decrease of dissolved Se concentration was accompanied by the increase of reduced Se species. Selenium accumulated preferentially in sediments of the initial pond cell receiving drainage water. Brine-shrimp harvesting activities did not affect Se speciation but may have reduced Se accumulation in surface detrital and sediments.  相似文献   

16.
Volatilization of selenium (Se) from soil to the atmosphere involves several sequential chemical reactions that form volatile Se species, followed by transport of the gaseous Se through the soil. This paper describes a numerical model that simulates the chemical and physical processes governing the production and transport of Se vapor in unsaturated soil. The model couples the four Se species involved in the production of Se vapor through chemical reactions, and allows each to migrate through the soil by advection, liquid or vapor diffusion depending on its affinity for the dissolved or vapor phase. The coupled transformations and transport of the four Se species, i.e., selenate, selenite, elemental and organic Se, and Se vapor, were calculated based on the Crank-Nicolson finite difference method. The model was used to analyze fluxes of Se vapor measured from a soil amended with inorganic Se in the form of selenate and covered with unamended clean soil of various thicknesses. Evolution of Se vapor from the soil was very fast, with measurable amounts of Se detected within 24 h. The peak of Se volatilization, detected at the 6th day, reached 3.31 Se microgram/day for the uncovered soil, but was reduced to near the detection limit (0.05 microgram/day) in the presence of a 8- or 16-cm clean soil cover. With two reaction rate coefficients fitted to the data, the model described Se volatilization very well. The estimated rate coefficient of Se methylation was unexpectedly high, with a value of 0.167/day. The net volatilization of Se, however, was severely inhibited by the fast demethylation, i.e., the reverse reaction which converted volatile Se species back into nonvolatile forms. As a result, Se vapor only penetrated a few centimeters in the soil. The demethylation rate coefficient, assessed by independent transport experiments using dimethyl selenide, was estimated as 186.8/day, corresponding to a half-life of only 5.3 min for Se vapor. Results of this study indicated that rapid demethylation of Se vapor during its diffusive transport through a soil is probably an important limiting factor in the volatilization of Se under natural conditions.  相似文献   

17.
Removal of cyanide by woody plants   总被引:4,自引:0,他引:4  
Hydrogen cyanide is a high volume production chemical that causes severe environmental problems. The toxicity of potassium cyanide (KCN) to basket willow trees (Salix viminalis) was tested. In aqueous solution, 2 mg CN l(-1) as KCN depressed the transpiration after 72 h about 50%. Trees exposed to 0.4 mg CN l(-1) in aqueous solution showed initially a depression of transpiration, but recovered. Doses of 8 and 20 mg CN l(-1) in aqueous solution were quickly mortal to the trees. At the end of the test, almost all cyanide had disappeared from the solutions. Levels of cyanide in plants were related to the toxicity, with no elevated levels of cyanide in plants exposed to 0.4 mg CN l(-1). Willows grown in sand survived 423.5 h irrigation with 20 mg CN l(-1). Willows grown in sand irrigated with 50 mg CN l(-1) died within a few days. The roots of the surviving willows were able to consume about 10 mg CN kg fresh weight(-1)h(-1). Vascular plants possess the enzymes beta-cyanoalanine synthase and beta-cyanoalanine hydrolase, which convert free cyanide to the amino acid asparagine. The in vivo capacity of woody plants (willow, poplar, elder, rose, birch) to remove cyanide was evaluated. Tests were performed with detached leaves and roots in KCN solutions of different concentrations. The highest removal capacity was obtained for basket willow hybrids (Salix viminalis x schwerinii). The Michaelis-Menten kinetics was determined. Realistic values of the half-saturation constant, K(M), were between 0.6 and 1.7 mg CN l(-1); the maximum metabolic capacity, v(max), was around 9.3 mg CN kg fresh weight(-1)h(-1). The removal of cyanide by plants might be useful in phytoremediation and treatment of wastewater from gold mining.  相似文献   

18.
Toxicity data of substances to higher plants is needed for the purpose of risk assessment, site evaluation, phytoremediation, and plant protection. However, the results from the most common phytotoxicity tests, like the OECD algae and Lemna test, are not necessarily valid for higher terrestrial plants. The willow tree toxicity test uses inhibition of transpiration (aside of growth and water use efficiency) of willow cuttings grown in spiked solutions or soils as end point to quantify toxicity. This overview presents results from 60 studies including 24 new unpublished experiments for 56 different chemicals or substrates. Highest toxicity (EC50 < 1 mg/L) was observed from exposure to heavy metals like copper and cadmium. Also, organotins and free cyanide showed very high toxicity. The toxic effect of chlorophenols on willows was comparable to that on duck weed (Lemna) and green algae, while volatile compounds like chlorinated solvents or benzene, toluene, ethylbenzene, and xylene had less effect on trees than on these aquatic plants, due to volatilization from leaves and test media. In particular low (g/L range) toxicity was observed for tested nanomaterials. Effects of pharmaceuticals (typically weak acids or bases) depended strongly of the solution pH. Like for algae, baseline toxicity was observed for willows, which is related to the water solubility of the compounds, with absolute chemical activity ranging from 0.01 to 0.1, but with several exceptions. We conclude that the willow tree toxicity test is a robust method for relating uptake, accumulation, and metabolism of substances to the toxicity to trees.  相似文献   

19.
In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 microg L(-1) Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected.  相似文献   

20.
Riefler RG  Medina VF 《Chemosphere》2006,63(6):1054-1059
Nitroglycerine (NG) and 2,4-dinitrotoluene (2,4-DNT) are propellants often found in soil and groundwater at military firing ranges. Because of the need for training with live ammunition, control or cleanup of these contaminants may be necessary for the continued use of these firing ranges. One inexpensive approach for managing sites exposed to these contaminants is the use phytoremedation, particularly using common or native grasses. In this study, the uptake of NG and 2,4-DNT from water by three common grasses, yellow nutsedge (Cyperus escalantus), yellow foxtail (Setaria glauca), and common rush (Juncus effusus), was investigated using hydroponic reactors. Rapid removal from solution by all grasses was observed, with yellow nutsedge removal rates being the highest. NG or 2,4-DNT accumulated in the tissues in all of the plants, except yellow foxtail did not accumulate NG. Higher concentrations were observed in killed roots, demonstrating the presence of plant-based enzymes actively transforming the contaminants. Yellow nutsedge was also grown in 2,4-DNT spiked soil. Significant uptake into the plants roots and leaves was observed and concentrations in the soil decreased rapidly, although 2,4-DNT concentration also decreased in the unplanted controls. In summary, the three grasses tested appear to be good candidates for phytoremediation of propellant contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号