首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The occurrence of five pharmaceuticals, consisting of four anti-inflammatory and one antiepileptic drug, was studied by passive sampling and grab sampling in northern Lake Päijänne and River Vantaa. The passive sampling was performed by using Chemcatcher® sampler with a SDB-RPS Empore disk as a receiving phase. In Lake Päijänne, the sampling was conducted during summer 2013 at four locations near the discharge point of a wastewater treatment plant and in the years 2013 and 2015 at four locations along River Vantaa. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations of carbamazepine, diclofenac, ibuprofen, ketoprofen, and naproxen in Lake Päijänne determined by passive sampling ranged between 1.4–2.9 ng L?1, 15–35 ng L?1, 13–31 ng L?1, 16–27 ng L?1, and 3.3–32 ng L?1, respectively. Similarly, the results in River Vantaa ranged between 1.2–40 ng L?1, 15–65 ng L?1, 13–33 ng L?1, 16–31 ng L?1, and 3.3–6.4 ng L?1. The results suggest that the Chemcatcher passive samplers are suitable for detecting pharmaceuticals in lake and river waters.  相似文献   

2.
This work describes the analysis of 15 pharmaceutical compounds, belonging to different therapeutic classes (anti-inflammatory/analgesics, lipid regulators, antiepileptics, β-blockers and antidepressants) and with diverse physical–chemical properties, in Spanish soils with different farmland uses. The studied compounds were extracted from soil by ultrasound-assisted extraction (UAE) and determined, after derivatization, by gas chromatography with mass spectrometric detection (GC–MS). The limits of detection (LODs) ranged from 0.14 ng g?1 (naproxen) to 0.65 ng g?1 (amitriptyline). At least two compounds where detected in all samples, being ibuprofen, salicylic acid, and paracetamol, the most frequently detected compounds. The highest levels found in soil were 47 ng g?1 for allopurinol and 37 ng g?1 for salicylic acid. The influence of the type of crop and the sampling area on the levels of pharmaceuticals in soil, as well as their relationship with soil physical–chemical properties, was studied. The frequent and widespread detection of some of these compounds in agricultural soils show a diffuse contamination, although the low levels found do not pose a risk to the environment or the human health.  相似文献   

3.
Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng?L?1 in the landfill leachate, 3,868 ng?L?1 in hospital effluent, 616 ng?L?1 in WWTP effluent, and 723 ng?L?1 in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.  相似文献   

4.
The Sarno River is nicknamed “the most polluted river in Europe”. The main goal of this study is to enhance our knowledge on the Sarno River water and sediment quality and on its environmental impact on the gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) in order to become a useful assessment tool for the regional administrations. For these reasons, 32 selected polychlorinated biphenyls (PCBs) and aldrin, α-BHC, β-BHC, δ-BHC, γ-BHC (lindane), 4,4′-DDD, 4,4′-DDE, 4,4′-DDT, dieldrin, endosulfan I, endosulfan II, endosulfan sulphate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide (isomer B) and methoxychlor were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments. Total concentrations of PCBs ranged from 1.4 to 24.9 ng L?1 in water (sum of DP and SPM) and from 1.01 to 42.54 ng g?1 in sediment samples. The concentrations of total organochlorine pesticides (OCPs) obtained in water (sum of DP and SPM) ranged from 0.54 to 7.32 ng L?1 and from 0.08 to 5.99 ng g?1 in sediment samples. Contaminant discharges of PCBs and OCPs into the sea were calculated in about 1,247 g day?1 (948 g day?1 of PCBs and 326 g day?1 of OCPs), showing that this river should account as one of the main contribution sources of PCBs and OCPs to the Tyrrhenian Sea.  相似文献   

5.
A method combining ultrasound-assisted emulsification–microextraction (USAEME) with gas chromatography–mass spectrometry (GC–MS) was developed for simultaneous determination of four acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, and diclofenac, as well as four phenols, 4-octylphenol, 4-n-nonylphenol, bisphenol A, and triclosan in municipal wastewaters. Conditions of extraction and simultaneous derivatization were optimized with respect to such aspects as type and volume of extraction solvent, volume of derivatization reagent, kind and amount of buffering salt, location of the test tube in the ultrasonic bath, and extraction time. The average correlation coefficient of the calibration curves was 0.9946. The LOD/(LOQ) values in influent and effluent wastewater were in the range of 0.002–0.121/(0.005–0.403) μg L?1 and 0.002–0.828/(0.006–2.758) μg L?1, respectively. Quantitative recoveries (≥94 %) and satisfactory precision (average RSD 8.2 %) were obtained. The optimized USAEME/GC–MS method was applied for determination of the considered pharmaceuticals and phenols in influents and treated effluents from nine Polish municipal wastewater treatment plants. The average concentration of acidic pharmaceuticals in influent and effluent wastewater were in the range of 0.06–551.96 μg L?1 and 0.01–22.61 μg L?1, respectively, while for phenols were in the range of 0.03–102.54 μg L?1 and 0.02–10.84 μg L?1, respectively. The removal efficiencies of the target compounds during purification process were between 84 and 99 %.  相似文献   

6.

Purpose

The presence of four phenolic endocrine disrupting compounds (EDCs: nonylphenol [NP], NP monoethoxylate[NP1EO], bisphenol A [BPA], triclosan, [TCS]) and four nonsteroidal anti-inflammatory drugs (NSAIDs: ibuprofen[IBF], ketoprofen [KFN], naproxen [NPX], diclofenac [DCF]) in a Greek river receiving treated municipal wastewater was investigated in this study.

Methods

Samples were taken from four different points of the river and from the outlet of a sewage treatment plant (STP) during six sampling campaigns, and they were analyzed using gas chromatography?Cmass spectrometry.

Results

According to the results, EDCs were detected in almost all samples, whereas NSAIDs were detected mainly in wastewater and in the part of the river that receives wastewater from the STP. Among the target compounds, the highest mean concentrations in the river were detected for NP (1,345?ng?L?1) and DCF (432?ng?L?1). Calculation of daily loads of the target compounds showed that STP seems to be the major source of NSAIDs to the river, whereas other sources contribute significantly to the occurrence of EDCs. The environmental risk due to the presence of target compounds in river water was estimated, calculating risk quotients for different aquatic organisms (algae, daphnids, and fish). Results denoted the possible threat for the aquatic environment due to the presence of NP and TCS in the river.  相似文献   

7.
The occurrence, behavior, and release of five acidic pharmaceuticals, including ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA), have been investigated along the different units in a tertiary-level domestic wastewater treatment plant (WWTP) in hyper-urbanization city of China (Shanghai). IBP was the most abundant chemicals among the measured in raw wastewater. The loads of the acidic pharmaceuticals in the WWTP influent ranged from 7.5 to 414 mg/day/1,000 inh, which were lower than those reported in the developed countries suggesting a less per capita consumption of pharmaceuticals in Shanghai. IBP obtained by highest removal (87 %); NPX and KEP were also significantly removed (69–76 %). However, DFC and CA were only moderately removed by 37–53 %, respectively. Biodegradation seemed to play a key role in the elimination of the studied pharmaceuticals except for DFC and CA. An annual release of acidic pharmaceuticals was estimated at 1,499 and 61.7 kg/year through wastewater and sludge, respectively, from Shanghai. Highest pharmaceuticals concentrations were detected in the effluent discharge point of the WWTP, indicating that WWTP effluent is the main source of the acidic pharmaceuticals to its receiving river. Preliminary results indicated that only DFC in river had a high risk to aquatic organisms. Nevertheless, the joint toxicity effects of these chemicals are needed to further investigate.  相似文献   

8.
Antidepressants are gaining public attention because of increasing reports of their occurrence in environment and their potential impact on ecosystems and human health. Continuous input of pharmaceuticals into rivers, through psychiatric hospital or wastewater treatment plant (WWTPs) effluent, may cause adverse effects on the aquatic ecosystems of the receiving water bodies. This work investigates the occurrence and sources of 8 antidepressants in main stream and tributaries of Huangpu River in Shanghai. The detected concentrations of the selected antidepressants ranged from low nanogram per liter to 42.9 ng L?1 (fluoxetine) in main stream and ranged from low nanogram per liter to 33.7 ng L?1 (fluoxetine) in tributaries. To study the effect of hospital or wastewater treatment plants (WWTPs) on environment, the upstream and downstream samples were analyzed. Generally, antidepressants had greater concentrations in downstream than that in upstream of the WWTPs or hospitals. It is suggesting that WWTPs and hospitals may introduce pollution into water environment. A preliminary risk assessment was conducted: none of the eight target compounds yielded risk quotient (RQ) values more than 0.1, thus indicating that no adverse effect is expected in water environment. These results will provide background data for future antidepressants pollution control and management in Shanghai, China.  相似文献   

9.
In the last decades, petroleum activities have increased in the Brazilian Amazon where there is oil exploration on the Urucu River, a tributary of the Amazon River, about 600 km from the city of Manaus. Particularly, transportation via the Amazon River to reach the oil refinery in Manaus may compromise the integrity of the large floodplains that flank hundreds of kilometers of this major river. In the Amazon floodplains, plant growth and nutrient cycling are related to the flood pulse. When oil spills occur, floating oil on the water surface is dispersed through wind and wave action in the littoral region, thus affecting the vegetation of terrestrial and aquatic environments. If pollutants enter the system, they are absorbed by plants and distributed in the food chain via plant consumption, mortality, and decomposition. The effect of oil on the growth and survival of vegetation in these environments is virtually unknown. The water hyacinth [Eichhornia crassipes (Mart.) Solms] has a pantropical distribution but is native to the Amazon, often growing in high-density populations in the floodplains where it plays an important role as shelter and food source for aquatic and terrestrial biota. The species is well known for its high capacity to absorb and tolerate high levels of heavy metal ions. To study the survival and response of water hyacinth under six different oil doses, ranging from 0 to 150 ml l?1, and five exposure times (1, 5, 10, 15, and 20 days), young individuals distributed in a completely randomized design experiment composed of vessels with a single individual each were followed over a 50-day period (30-day acclimatization, 20 days under oil treatments). Growth parameters, biomass, visual changes in the plants, and pH were recorded at 1, 5, 10, 15, and 20 days. Increasing the time of oil exposure caused a decrease in biomass, ratio of live/dead biomass and length of leaves, and an increase in the number of dead leaves. Dose of oil and time of exposure are the most important factors controlling the effects of petroleum hydrocarbons on E. crassipes. Although the species is able to survive exposure to a moderate dose of oil, below 75 ml l?1 for only 5 days, severe alterations in plant growth and high mortality were observed. Therefore, we conclude that Urucu oil heavily affects E. crassipes despite its known resistance to many pollutants.  相似文献   

10.

Background, aim, and scope  

The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK.  相似文献   

11.
Dobor J  Varga M  Záray G 《Chemosphere》2012,87(2):105-110
The sorption process of selected non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, ketoprofen, diclofenac) on biofilm covered river sediments were investigated in laboratory. In the course of the experiments, the effect of pH of aqueous phase, the effect of TOC (total organic carbon) content of biofilm on the sorption processes were studied. The determination of concentration of drugs was performed by gas chromatography mass spectrometry (GC-MS) both in liquid and solid phases. The pseudo-first-order rate constant of the sorption was found to be 83 min(-1). The effect of pH on the sorption of diclofenac was significantly lower than the obtained values in case of the other three drugs. The calculated K(d) (sorption coefficient) values increased in the sequence of ibuprofen, naproxen, ketoprofen and diclofenac and varied between 0.1-0.4; 0.2-0.7; 0.2-1.2; 0.2-1.4 kg L(-1) respectively, depending on the characteristics of the sediments. The value of K(d)×f(oc) showed a straight line as function of f(oc) (fraction of organic carbon) therefore, instead of the widely distributed normalization process (K(d)/f(oc)), an empirical equation (K(d)=A/f(oc)+B) was suggested for estimation of the K(d) values in case of different TOC content sediments.  相似文献   

12.
The aqueous environmental fate of two antibiotics, lincomycin and clarithromycin, and an antiepileptic drug, carbamazepine, was investigated by monitoring drugs decomposition and identifying intermediates in Po river water (North Italy). Initially, control experiments in the dark and under illumination were performed on river water spiked with drugs to simulate all possible transformation processes occurring in the aquatic system. Under illumination, these pharmaceuticals were degraded and transformed into numerous organic intermediate compounds. Several species were formed and characterised by analysing MS and MS n spectra and by comparison with parent molecule fragmentation pathways. River water was sampled at three sampling points in an urban area. The selected pharmaceuticals were detected in all samples. Eight transformation products identified in the laboratory simulation were found in natural river water from carbamazepine degradation, three from clarithromycin and two from lincomycin. Their transformation occurring in aquatic system mainly involved mono- and poly-hydroxylation followed by oxidation of the hydroxyl groups.  相似文献   

13.
East Lake resides in the urban area of Wuhan City and is the largest urban lake in China. The concentrations of 16 organochlorine pesticides (OCPs) were analyzed in 108 surface water samples collected from the East Lake. The total concentrations of OCPs ranged from not detected to 120 ng L?1 with predominance of δ-HCH, heptachlor, and α-HCH. The mean values of HCHs and DDTs were 7.40 and 5.70 ng L?1, respectively, accounting for 40 and 31 % of the total OCPs. For the five lakelets in East Lake, Houhu Lake exhibited the highest concentrations of HCHs, DDTs, and total OCPs, which has been used actively for fisheries and surrounded by suburban rural areas and farmlands. Historical lindane or technical HCH input was probably the source of HCH, while technical DDTs might be the source of DDT in the East Lake. The ratio between heptachlor and its metabolic products indicated recent input of heptachlor. Although the combining ecological risks for all aquatic species in the East Lake calculated by species sensitivity distribution reached approximately 10?5, the OCPs in the East Lake had slight effects on aquatic organisms. The carcinogenic risks and non-carcinogenic hazard indices of DDTs and HCHs indicated that water in the East Lake was not suitable as water sources for human. However, the results indicated the water quality was safe for people to swim in the urban lake.  相似文献   

14.
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in 18 surface sediment samples collected from Bizerte lagoon, Tunisia. The total concentrations of ten PCBs (∑PCBs) and of four OCPs (∑OCPs) in the sediments from this area ranged from 0.8 to 14.6 ng g?1 dw (average value, 3.9 ng g?1 dw) and from 1.1 to 14.0 ng g?1 dw (average value, 3.3 ng g?1 dw), respectively. Among the OCPs, the range of concentrations of dichlorodiphenyltrichloroethane and its metabolites (DDTs) and hexachlorobenzene (HCB) were 0.3–11.5 ng g?1 dw (1.9 ng g?1 dw) and 0.6–2.5 ng g?1 dw (1.4 ng g?1 dw), respectively. Compositional analyses of the POPs indicated that PCB 153, 138 and 180 were the predominant congeners accounting for 60 % of the total PCBs. In addition, p,p′-DDT was found to be the dominant DDTs, demonstrating recent inputs in the environment. Compared with some other regions of the world, the Bizerte lagoon exhibited low levels of PCBs and moderate levels of HCB and DDTs. The high ratios ΣPCBs/ΣDDTs indicated predominant industrial versus agricultural activities in this area. According to the established guidelines for sediment quality, the risk of adverse biological effects from such levels of OCPs and PCBs, as recorded at most of the study sites, was insignificant. However, the higher concentrations in stations S1 and S3 could cause biological damage.  相似文献   

15.
Parabens have been widely used as antimicrobial agents, mainly in food products, pharmaceuticals, and cosmetics. Although they are known as safe preservatives, they also cause some harm to human health, which has been discussed lately. Therefore, the aim of this study was to evaluate the occurrence of nine parabens (including isomers) in mineral and drinking waters, besides in drinking water treatment sludge (DWTS) samples with determination by liquid chromatography tandem mass spectrometry (LC-MS/MS). Both methods solid phase extraction (SPE) and QuEChERS were validated. Calibration curves showed a correlation coefficient of 0.99 for all compounds. LOQ values ranged from 0.04 to 4 μg L?1 in aqueous matrices and from 5 to 500 ng g?1 in DWTS. Recoveries between 70 and 115% were reached with RSD below 20% for all compounds in SPE whereas recoveries between 62 and 119% were found with RSD below 20% for almost all compounds in QuEChERS. Matrix effect had low values (<?20%); it was only above 20% for methylparaben in the SPE and for pentylparaben in the QuEChERS. Using a quick and simple extraction procedures with SPE, QuEChERS, and LC-MS/MS analyses, these methods proved to be selective and sensitive. They were successfully applied to real samples (treated water, mineral water, and sludge), and methylparaben was detected at concentration levels below 0.242 μg L?1 in mineral and treated water samples and 10 ng g?1 in DWTS samples.  相似文献   

16.
We investigated the PAH contamination of Naples urban area, densely populated and with high traffic flow, by analyses of environmental matrices: soil and Quercus ilex leaves. Being some PAHs demonstrated to have hazardous effects on human health, the accumulation of carcinogenic and toxic PAHs (expressed as B(a)Peq) was evaluated in the leaves and soil. The main sources of the PAHs were discriminated by the diagnostic ratios in the two matrices. The urban area appeared heavily contaminated by PAHs, showing in soil and leaves total PAH concentrations also fivefold higher than those from the remote area. The soil mainly accumulated heavy PAHs, whereas leaves the lightest ones. Median values of carcinogenic PAH concentrations were higher in soil (440 ng g?1 d.w.) and leaves (340 ng g?1 d.w.) from the urban than the remote area (60 and 70 ng g?1 d.w., respectively, for soil and leaves). Also, median B(a)Peq concentrations were higher both in soil and leaves from the urban (137 and 63 ng g?1 d.w., respectively) than those from the remote area (19 and 49 ng g?1 d.w., respectively). Different from the soils, the diagnostic ratios found for the leaves discerned PAH sources in the remote and urban areas, highlighting a great contribution of vehicular traffic emission as main PAH source in the urban area.  相似文献   

17.
Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m?3) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p?>?0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m?3 air Hg were significantly lower than those exposed to 2 ng m?3 air Hg in late morning (p?<?0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m?3 air Hg were significantly higher than those exposed to 2 ng m?3 air Hg (p?<?0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g?1) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p?>?0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.  相似文献   

18.
One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p?<?0.05), while results from soil Hg-enriched experiment indicated that soil-borne Hg had significant influence on Hg accumulation in the roots of each plant (p?<?0.05), and some influence on vegetable leaves (p?<?0.05), but no significant influence on Hg accumulation in grass leaves (p?>?0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g–1, respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m–3.  相似文献   

19.
In this paper, for the first time, faujasite Y zeolite impregnated with iron (III) was employed as a catalyst to remove a real cocktail of micropollutants inside real water samples from the Meurthe river by the means of the heterogeneous photo-Fenton process. The catalyst was prepared by the wet impregnation method using iron (III) nitrate nonahydrate as iron precursor. First, an optimization of the process parameters was conducted using phenol as model macro-pollutant. The hydrogen peroxide concentration, the light wavelength (UV and visible) and intensity, the iron loading immobilized, as well as the pH of the solution were investigated. Complete photo-Fenton degradation of the contaminant was achieved using faujasite containing 20 wt.% of iron, under UV light, and in the presence of 0.007 mol/L of H2O2 at pH 5.5. In a second step, the optimized process was used with real water samples from the Meurthe river. Twenty-one micropollutants (endocrine disruptors, pharmaceuticals, personal care products, and perfluorinated compounds) including 17 pharmaceutical compounds were specifically targeted, detected, and quantified. All the initial concentrations remained in the range of nanogram per liter (0.8–88 ng/L). The majority of the micropollutants had a large affinity for the surface of the iron-impregnated faujasite. Our results emphasized the very good efficiency of the photo-Fenton process with a cocktail of a minimum of 21 micropollutants. Except for sulfamethoxazole and PFOA, the concentrations of all the other microcontaminants (bisphenol A, carbamazepine, carbamazepine-10,11-epoxide, clarithromycin, diclofenac, estrone, ibuprofen, ketoprofen, lidocaine, naproxen, PFOS, triclosan, etc.) became lower than the limit of quantification of the LC-MS/MS after 30 min or 6 h of photo-Fenton treatment depending on their initial concentrations. The photo-Fenton degradation of PFOA can be neglected. The photo-Fenton degradation of sulfamethoxazole obeys first-order kinetics in the presence of the cocktail of the other micropollutants.  相似文献   

20.
Concentrations and profiles of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) were investigated in sediment and plants collected from a salt marsh in the Tejo estuary, Portugal. The highest PCDD/F and dl-PCB concentrations were detected in uncolonized sediments, averaging 325.25?±?57.55 pg g?1 dry weight (dw) and 8,146.33?±?2,142.14 pg g?1 dw, respectively. The plants Sarcocornia perennis and Halimione portulacoides growing in PCDD/F and dl-PCB contaminated sediments accumulated contaminants in roots, stems, and leaves. It was observed that PCDD/F and dl-PCB concentrations in roots were significantly lower in comparison with stems and leaves. In general, concentration of ΣPCDD/Fs and Σdl-PCBs in H. portulacoides tissues were found to be twofold higher than those in S. perennis, indicating a difference in the accumulation capability of both species. Furthermore, congener profiles changed between sediments and plant tissues, reflecting a selective accumulation of low chlorinated PCDD/Fs and non-ortho dl-PCBs in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号