首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goal, Scope and Background Some anthropogenic pollutants posses the capacity to disrupt endogenous control of developmental and reproductive processes in aquatic biota by activating estrogen receptors. Many anthropogenic estrogen receptor agonists (ERAs) are hydrophobic and will therefore readily partition into the abiotic organic carbon phases present in natural waters. This partitioning process effectively reduces the proportion of ERAs readily available for bioconcentration by aquatic biota. Results from some studies have suggested that for many aquatic species, bioconcentration of the freely-dissolved fraction may be the principal route of uptake for hydrophobic pollutants with logarithm n-octanol/water partition coefficient (log Kow) values less than approximately 6.0, which includes the majority of known anthropogenic ERAs. The detection and identification of freely-dissolved readily bioconcentratable ERAs is therefore an important aspect of exposure and risk assessment. However, most studies use conventional techniques to sample total ERA concentrations and in doing so frequently fail to account for bioconcentration of the freely-dissolved fraction. The aim of the current study was to couple the biomimetic sampling properties of semipermeable membrane devices (SPMDs) to a bioassay-directed chemical analysis (BDCA) scheme for the detection and identification of readily bioconcentratable ERAs in surface waters. Methods SPMDs were constructed and deployed at a number of sites in Germany and the UK. Following the dialytic recovery of target compounds and size exclusion chromatographic clean-up, SPMD samples were fractionated using a reverse-phase HPLC method calibrated to provide an estimation of target analyte log Kow. A portion of each HPLC fraction was then subjected to the yeast estrogen screen (YES) to determine estrogenic potential. Results were plotted in the form of 'estrograms' which displayed profiles of estrogenic potential as a function of HPLC retention time (i.e. hydrophobicity) for each of the samples. Where significant activity was elicited in the YES, the remaining portion of the respective active fraction was subjected to GC-MS analysis in an attempt to identify the ERAs present. Results and Discussion Estrograms from each of the field samples showed that readily bioconcentratable ERAs were present at each of the sampling sites. Estimated log Kow values for the various active fractions ranged from 1.92 to 8.63. For some samples, estrogenic potential was associated with a relatively narrow range of log Kow values whilst in others estrogenic potential was more widely distributed across the respective estrograms. ERAs identified in active fractions included some benzophenones, various nonylphenol isomers, benzyl butyl phthalate, dehydroabietic acid, sitosterol, 3-(4-methylbenzylidine)camphor (4-MBC) and 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN). Other tentatively identified compounds which may have contributed to the observed YES activity included various polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives, methylated benzylphenols, various alkylphenols and dialkylphenols. However, potential ERAs present in some active fractions remain unidentified. Conclusions and Outlook Our results show that SPMD-YES-based BDCA can be used to detect and identify readily bioconcentratable ERAs in surface waters. As such, this biomimetic approach can be employed as an alternative to conventional methodologies to provide investigators with a more environmentally relevant insight into the distribution and identity of ERAs in surface waters. The use of alternative bioassays also has the potential to expand SPMD-based BDCA to include a wide range of toxicological endpoints. Improvements to the analytical methodology used to identify ERAs or other target compounds in active fractions in the current study could greatly enhance the applicability of the methodology to risk assessment and monitoring programmes.  相似文献   

2.
Triolein-containing semipermeable membrane devices (SPMDs) were employed as passive samplers to provide data on the bioavailable fraction of organic, waterborne, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs) in streams flowing through a highly polluted industrial area of Bitterfeld in Saxony-Anhalt, Germany. The contamination of the region with organic pollutants originates in wastewater effluents from the chemical industry, from over one-hundred years of lignite exploitation, and from chemical waste dumps. The main objective was to characterise time-integrated levels of dissolved contaminants, to use them for identification of spatial trends of contamination, and their relationship to potential pollution sources. SPMDs were deployed for 43 days in the summer of 1998 at four sampling sites. The total concentration of pollutants at sampling sites was found to range from a low of 0.8 microgram/SPMD to 25 micrograms/SPMD for PAHs, and from 0.4 microgram/SPMD to 22 micrograms/SPMD for OCPs, respectively. None of the selected PCB congeners was present at quantifiable levels at any sampling site. A point source of water pollution with OCPs and PAHs was identified in the river system considering the total contaminant concentrations and the distribution of individual compounds accumulated by SPMDs at different sampling sites. SPMD-data was also used to estimate average ambient water concentrations of the contaminants at each field site and compared with concentrations measured in bulk water extracts. The truly dissolved or bioavailable portion of contaminants at different sampling sites ranged from 4% to 86% for the PAHs, and from 8% to 18% for the OCPs included in the estimation. The fraction of individual compounds found in the freely dissolved form can be attributed to the range of their hydrophobicity. In comparison with liquid/liquid extraction of water samples, the SPMD method is more suitable for an assessment of the background concentrations of hydrophobic organic contaminants because of substantially lower method quantification limits. Moreover, contaminant residues sequestered by the SPMDs represent an estimation of the dissolved or readily bioavailable concentration of hydrophobic contaminants in water, which is not provided by most analytical approaches.  相似文献   

3.
Semipermeable membrane sampling devices (SPMDs) and caged lake mussels (Anodonta piscinalis) were simultaneously deployed at four lake watercourse sites in Central Finland four weeks in August 1992. This study was part of the regular annual monitoring of the organochlorine compounds (OCC) in pulp-mill recipient watercourses of Finland with bivalves. Chlorohydrocarbons (CHCs), chlorophenol compounds (PCPs), chloroanisoles (PCAs) and chloroveratroles (PCVs) were analyzed from lipid extract of mussels and from the synthetic triolein lipid of the SPMDs. Hexane-diethyl ether (9:1, v/v) dialysis using polyethylene membrane was applied in dean up of the SPMD lipids and, for comparison, to six sets of the mussel fat. Dialysis recovered CHCs but not PCPs from the mussel fat. CHCs, PCPs, PCAs and PCVs were all recovered in dialysis of the SPMD lipid. Handling of SPMDs in the transport and deployment operations caused significant OCC contamination for the blank SPMDs. Similar trends were revealed in the OCC profiles for mussels ans SPMDs. An exception was the lack of PCPs appearing in SPMDs that did appear in mussels and in a complementary manner the appearance of the PCAs and PCVs in SPMDs.  相似文献   

4.
Semi-permeable membrane devices (SPMDs) are passive samplers that have been designed to sample the bioavailable fractions of hydrophobic organic compounds in aquatic ecosystems. This study aims at evaluating the ability for SPMD to sample polycyclic aromatic hydrocarbons (fluoranthene, pyrene and benzo[a]pyrene) that are actually bioavailable to Daphnia magna. For that purpose, the SPMD-available fraction and the bioavailable fraction to D. magna are compared in controlled media with Dissolved Organic Matters (DOMs) from various origins and at different concentrations. The presence of all but one DOM reduces the accumulation of PAHs in SPMD or in D. magna. Moreover, this comparative laboratory study shows that in 10 cases on 13, the SPMD-available fraction is close to the available fraction to D. magna. When significant differences are observed between SPMD-available and bioavailable fractions, they remain less than 50% at DOM concentrations below 10 mg/l DOC, which corresponds to a maximum DOC concentration usually found in temperate rivers. This study confirms the suitability of the SPMD technique to monitor readily bioavailable hydrophobic contaminants in aquatic environments containing DOM from various origins and characteristics.  相似文献   

5.
Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed at several freshwater sites in and around the city of Amsterdam. Carp (Cyprinus carpio) were caged for 4 weeks at 10 sites, together with semipermeable membrane devices (SPMDs). In addition, sediment samples were taken at each site. SPMDs and sediments were analysed for PAHs, PCBs and OCPs. Carp muscle tissues were analysed for PCBs and OCP, while PAH metabolites were assessed in fish bile. Contaminant concentrations in the water phase were estimated using three different methods: 1. Using fish tissue concentrations and literature bioconcentration factors (BCFs), 2. Using SPMD levels and a kinetic SPMD uptake model, and 3. Using sediment levels and literature sorption coefficients (Kocs). Since PAH accumulation in fish is not considered an accurate indicator of PAH exposure, calculated aqueous PAH concentrations from SPMD data were compared with semiquantitatively determined biliary PAH metabolite levels. Contaminant concentrations in the water phase estimated with fish data (Cwfish) and SPMD data (Cwspmd) were more in line for compounds with lower Kow than for compounds with higher Kow values. This indicates that the assumption of fish–water sorption equilibrium was not valid. At most sites, sediment-based water levels (Cwsed) were comparable with the Cwspmd, although large differences were observed at certain sites. A significant correlation was observed between biliary PAH metabolite levels in fish and aqueous PAH concentrations estimated with SPMD data, suggesting that both methods may be accurate indicators of PAH exposure in aquatic ecosystems.  相似文献   

6.
Semipermeable membrane devices (SPMDs) were deployed in water using four different methods: a typical SPMD cage with and without a mesh cover, a bowl chamber and without any protection. In addition to routinely used performance reference compounds (PRCs), perdeuterated dibenz[a,h]anthracene was added. Due to its high sampler to water partition coefficient no measurable clearance due to diffusion was expected during the deployment period, hence any observed loss could be attributed to photodegradation. The loss of PRCs was measured and SPMD-based water concentrations determined. Results showed that a typical SPMD deployment cage covered with mesh provided the best protection from photodegradation. Samplers which had undergone the highest photodegradation underestimated PAH water concentrations by up to a factor of 5 compared to the most protected SPMDs. This study demonstrates that the potential for photodegradation needs to be addressed when samplers are deployed in water of low turbidity.  相似文献   

7.
Freshwater clams (Corbicula fluminea) and the Huckins et al. (1) semi-permeable membrane sampling device (SPMD) were simultaneously deployed at three sites on the Sacramento and San Joaquin rivers in 1990. Both clams and the SPMDs were analyzed for sequestered pesticides and polychlorinated biphenyls (PCBs) by gas chromatography with electron capture detection (GC/ECD). Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and non-ortho PCBs were quantified by high resolution mass spectrometry (MS). In general, levels of organochlorine compounds were approximately 1.6 times higher in clams on a wet weight basis than in the SPMDs, and trends in accumulation were similar except where biofouling of the SPMD membranes decreased uptake rates. Comparisons between the normalized, average levels of PCDDs accumulated showed that while octachlorodibenzo-p-dioxin (OCDD) was most prevalent in both clams and SPMDs, much higher levels of 2,3,7,8 TCDD were found in the SPMDs than in the clams; 2,3,7,8 TCDD was 32% of the profile relative to the OCDD level for the SPMDs and <1% of the clam OCDD level. PCB levels showed the clams primarily accumulated hexachlorinated PCBs while the pentachlorinated and tetrachlorinated congeners were higher in the SPMDs. Differences in profiles for homologous series among the PCBs reveal that some congeners, especially those with 2,4,5 substitution, are more likely to bioaccumulate than those with lower chlorination or adjacent unsubstituted sites. GC/MS chromatograms indicate the SPMDs also sequestered several polyaromatic hydrocarbons. GC/ECD chromatograms indicate the presence of several unidentified, early eluting compounds in the SPMDs.  相似文献   

8.
Semipermeable membrane devices (SPMDs) mimic passive diffusive transport of bioavailable hydrophobic organic compounds through biological membranes and their partitioning between lipids and environmental levels. Our study was developed on a surface water treatment plant based in Turin, Northern Italy. The investigated plant treats Po River surface water and it supplies about 20% of the drinking water required by Turin city (about one million inhabitants). Surface water (input) and drinking water (output) were monitored with SPMDs from October 2001 to January 2004, over a period of 30 days. The contaminant residues, monthly extracted from SPMDs by dialysis in organic solvent, were tested with the MicrotoxTM acute toxic test and with the Ames mutagenicity test. Same extracts were also analyzed with gaschromatography—mass spectrometry technique in order to characterise the organic pollutants sampled, especially Polycyclic Aromatic Hydrocarbons (PAHs).

Although the PAHs mean concentration is about one hundred times lower in the output samples, the mean toxic units are similar in drinking and surface water.

Our data indicate that the SPMD is a suitable tool to assess the possible toxicity in drinking water.  相似文献   


9.
Background, Aim and Scope The article is focused on dioxin, furan, PCB and organochlorine pesticide monitoring in the surface waters of the Central European, protected natural reserve Krivoklatsko, under the UNESCO programme Man and Biosphere. Persistent compounds are presently transported via different means throughout the entire world. This contamination varies significantly between sites. This raises the question of what constitutes the naturally occurring background levels of POPs in natural, unpolluted areas, but which are close to industrialised regions. Information of real background POP contamination can be of high value for risk assessment management of those sites evidently polluted and for the defining of de-contamination limits. Preserved areas should not be seen as isolated regions in which the impacts of human activities and natural factors are either unexpected or overlooked. Every ambient region, even those protected by a law or other means, are still closely connected to neighbouring human developed and impacted areas, and are therefore subject to this anthropogenic contamination. These areas adjacent to natural reserves are sources of diverse substances, via entry of air, water, soil and/or biota. After an extended period of industrial activities, organochlorine pollutants, even those emitted in trace concentrations have reached detectable levels. For future research and for the assessment of environmental changes, present levels of contamination would be of high importance. This work publishes data of the contamination with organochlorine pollutants of this natural region, where biodiversity and ecological functions are of the highest order. Materials and Methods: Semipermeable membrane devices (SPMDs) were utilised as the sampling system. SPMDs were deployed in two small creeks and one water reservoir selected in the central part of the Krivoklatsko Natural Reserve, where it could be expected that any possible contamination by POPs would be lowest. The exposed SPMDs were analysed both for chemical contents of POPs and for toxicity properties. The chemical analyses of dibenzo-dioxins, dibenzo-furans, PCBs and OCPs were analysed by GC/MS/MS on GCQ or PolarisQ (Thermoquest). Toxicity bioassays were performed on the alga Desmodesmus subspicatus, bacteria Vibrio fischeri and crustacean Daphnia magna. All toxicity data were expressed as the effective volume Vtox. Vtox is a toxicity parameter, the determination of which is independent of SPMD deployment time and pre-treatment dilution (unlike, for example, the EC50 of the SPMD extract). Results: The following chemical parameters were monitored: 1) tetra, penta, hexa and hepta dibenzo-p-dioxins and furans; 2) all those detectable from tri- through deca-polychloriated biphenyls (PCBs) and 3) a group of organochlorine pesticides: hexachlorobenzene and isomers of hexachlorocyclohexane, DDE, DDD and DDT. The concentrations of dioxins and furans on the assessed sites varied from under detection levels up to 7 pg.l-1; PCBs were detected in a sum concentration up to 2.8 ng.l-1; and organochlorine pesticides up to 346 pg.l-1. The responses of bioassays used were very low, with the values obtained for Vtox being under 0.03 l/d. Discussion: Toxicity testing showed no toxicity responses, demonstrating that the system used is in coherence with the ecological status of the assessed sites. Values of Vtox were under the critical value – showing no toxicity. The PCA of chemical analysis data and toxicity responses resulted in no correlations between these two groups of parameters. This demonstrated that the present level of contamination has had no direct adverse effects on the biota. Conclusions: The concentration values of six EPA-listed, toxic dioxins and sums of tetra-hepta dioxins; nine EPA toxic dibenzofurans and the sums of tetra-hepta bibenzofurans are presented together with all tri-deka PCBs and organochlorine pesticides (alfa-, beta-, gama-, delta-HCH, HCB, opDDE, ppDDE, opDDD, ppDDD, opDDT, ppDDT). These values represent possible current regional natural background values of these substances monitored within the Central European region, with no recorded adverse effects on the freshwater ecosystem (up until the present time). Recommendations and Perspectives: Assessment of dioxins, furans and other organochlorine compounds within natural reserves can be important for the monitoring of human-induced impacts on preserved areas. No systematic monitoring of these substances in areas not directly affected by industry has generally been realised. There is a paucity of data of the presence of any of these substances within natural regions. Further monitoring of contamination of both soil and biota by dioxins and furans in preserve regions is needed and can be used for future monitoring of man-made activities and/or accidents. Semipermeable membrane devices proved to be a very good sampling system for the monitoring of trace concentrations of ambient organochlorine compounds. Toxicity evaluation using the Vtox concept demonstrated that those localities assessed expressed no toxicity.  相似文献   

10.
BACKGROUND: Incidence of amphibian deformities have increased in recent years, especially in the northern region of the United States. While many factors have been proposed as being responsible for generating deformities (e.g., contaminants, ultraviolet radiation [UV], parasites), no single cause has been definitively established. METHODS: To determine whether waterborne chemicals are responsible for amphibian deformities in ponds in north-central Minnesota, we deployed semipermeable membrane devices (SPMDs) in an impacted and a reference site to accumulate lipophilic contaminants. We then exposed native tadpoles (northern leopard frogs; Rana pipiens) to the SPMD extracts combined with two agricultural pesticides (atrazine, carbaryl) at two levels of UV radiation. RESULTS AND DISCUSSION: UV radiation alone caused a slight increase in hatching success and tadpole growth rate. Deformity rate among hatchlings was high following exposure to SPMD extracts from the reference site in the absence of UV, suggesting that chemicals present at this site are broken down by UV to less harmful forms, or become less bioavailable. Conversely, impacted site SPMD extracts caused hatchling deformities only in the presence of UV, suggesting that UV potentiates the teratogenicity of the compounds present there. Impacted site SPMD extracts significantly increased the number of bony triangles among metamorphs, a common deformity observed at this site. The incidence of skin webbings increased significantly with SPMD extracts from both sites as well as with our pesticide control containing atrazine and carbaryl alone. CONCLUSIONS: Higher deformity rates among tadpoles reared in the presence of UV radiation and SPMD extracts from sites where deformities are common indicates a chemical compound (or compounds) in the water at this site may be causing the deformities. RECOMMENDATIONS AND OUTLOOK: It is important to examine the effects of chemical stressors in the presence of other natural stressors (e.g., UV radiation) to gain a better understanding of how multiple stressors work to impact amphibians and amphibian populations.  相似文献   

11.
- Goal, Scope, Background. Lake Skadar is the largest lake in Balkan Peninsula, located on the Montenegro-Albanian border. The unique features of the lake and wide range of endemic and rare or endangered plant and animal species resulted in the classification of the Skadar as a wetland site of international significance. In spite of its importance the Lake is influenced by inflowing waters from river Morača and other regional rivers contaminated by the industry, municipal and agricultural activities in the area. Therefore, the Lake has been subject of various physical, chemical, biological and toxicological examinations. However, community-level analyses are most relevant to assess the effect of stressors on aquatic ecosystems. In the present study bacterial community structure among differently polluted sites of the lake was compared by genetic fingerprinting technique. Methods Water and sediment samples were collected from five differently polluted sampling sites on the Lake Skadar in spring and autumn of the same year. The bacterial community structure in the samples was characterized and compared by temporal temperature gel electrophoresis (TTGE) analysis of polymerase chain reaction-amplified bacterial 16S rRNA genes. Results and Discussion The TTGE analysis resulted in many distinguishable and reproducible band patterns, allowing reliable comparison of bacterial communities among sampling sites. Results on the bacterial community structure revealed that three of the selected locations can be considered as sites that have not shown any pollution degradation determined by our method, due to similar structure of bacterial community in the sediment samples. On the other hand, significant shifts in bacterial community structure in the mouth of the river Morača and Plavnica were shown. Since the results coincide with some of the bioassays and chemical analysis performed previously, the changes in bacterial community structure are explained as an effect of antropogenic pollution on the lake ecosystem by waters of river Morača and stream Plavnica. Conclusion The TTGE has proven to be an efficient and reliable method to monitor bacterial dynamics and community shifts in aquatic environment, especially in the sediments. Within the variety of environmental quality assessments the use of TTGE analyses of bacterial community is strongly recommended, particularly as an initial investigation. However, in any conclusion on the state of the environment, the TTGE results should be combined to some other biological, chemical and hydrological data. Recommendation and Outlook Since prokaryotes are a crucial group of organisms in the biosphere, the ecosystem function studies are largely based on bacterial communities. Therefore, bacterial community structure analysis should be a part of an integrated weight of evidence approach in pollution assessment. In case of Triad approach, consisting of chemical analyses, bioassays, and community studies in the field, the TTGE bacterial community structure analyses should be placed in the later Triad leg. In comparison to other community studies, based on various biotic indices, the TTGE bacterial community analysis has proven to be very sensitive, reliable and less time consuming.  相似文献   

12.
Harman C  Tollefsen KE  Bøyum O  Thomas K  Grung M 《Chemosphere》2008,72(10):1510-1516
Passive sampling devices provide a useful contribution to the monitoring of contaminants in the aquatic environment. However, calibration data needed for the calculation of water concentrations from sampler accumulations are restricted to a limited number of compound classes. Thus uptake of a range of alkylated phenols (AP), polycyclic aromatic hydrocarbons (PAH) and carbazoles was determined for semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) using a flow through exposure system. Sampling rates ranged from 0.02 to 0.26 l d(-1) for POCIS and 0.02 to 13.83 l d(-1) for SPMDs. Observed SPMD uptake was also compared to that predicted by an empirical model including the use of performance reference compounds (PRCs). Predicted sampling rates did not differ by more than a factor of 1.3 from experimental values for PAH, providing further evidence that the PRC approach can be successfully used to determine in situ sampling rates for these compounds. Experimental sampling rates for AP in SPMDs were, however, much lower than predicted. This discrepancy was too large to be explained by small uncertainties in the calibration system or in the calculations. Based on these data we conclude that while hydrophobic AP are accumulated by SPMDs their partitioning cannot be predicted from their logK(ow) using current methods. Due to this lower than expected uptake, sampling rates were only higher in SPMDs than POCIS in the range of logK(ow)>5.0. Simultaneous deployment of both sampler types allows the study of compounds with a broad range of physicochemical properties.  相似文献   

13.
Uptake of eight pesticides of different classes (organochlorines, synthetic pyrethroids, dinitroanilines, amides) by semi-permeable membrane devices (SPMDs) was studied in a laboratory continuous-flow system. After 20 days of exposure, membrane concentration factors were in the range of 50 000-120 000 for all the analytes except for the amide herbicides propachlor and alachlor, which were not detected in any of the SPMDs. The kinetic data and mathematical models were used to calculate analyte uptake rate constants, SPMD lipid/water partition coefficients, average sampling rates and concentrations of the pesticides in water. To assess the effects of concentrated pesticides, standard bioassays (Salmonella/histidine reversion assay and bioluminescence inhibition in Vibrio fischeri test) were incorporated in the SPMD technique. To test the method in an environmental situation, SPMDs were deployed in polluted sites in Lithuania. Polynuclear aromatic hydrocarbons were the major pollutants detected in the SPMDs deployed in the field. All the SPMD dialysates were highly toxic in the bioluminescence inhibition test but no mutagenic activity was observed in the Salmonella/histidine reversion assay.  相似文献   

14.
Luellen DR  Shea D 《Chemosphere》2003,53(7):705-713
Semipermeable membrane devices (SPMDs) are commonly used as a time-integrated measure of aqueous concentrations of persistent hydrophobic chemicals, including PAH, pesticides, dioxins, and PCBs. Another class of persistent hydrophobic chemicals is petroleum biomarker compounds (hopanes and steranes) that are used for hydrocarbon source identification and allocation. In this study three different passive sampling device designs were exposed to a complex hydrocarbon mixture (Alaska North Slope crude) in a laboratory experiment to determine uptake rates of biomarkers into SPMDs. In addition to the standard triolein filled SPMDs, iso-octane filled SPMDs (ISPMDs) and unfilled low-density polyethylene strips (PESDs) were tested. Uptake rates and effective sampling rates were determined for 53 compounds. There was little variation in sampling rates among the individual biomarkers; average values (ld(-1)) for hopanes were 0.43+/-0.07 (PESD), 0.33+/-0.06 (SPMD), and 0.44+/-0.03 (ISPMD) and average sterane sampling rates were 0.57+/-0.04 (PESD), 0.42+/-0.03 (SPMD), and 0.53+/-0.03 (ISPMD). The primary reason for biomarker analysis is for source discrimination of petroleum. Nineteen different diagnostic ratios were measured, and were found to be remarkably well conserved between the oil, water, and all three devices. This indicates that SPMDs, PESDs, and ISPMDs should each be effective for source discrimination studies of petroleum contamination.  相似文献   

15.
Semipermeable membrane device (SPMD) is a passive sampler that sequesters lipophilic contaminants, mimicking the bioconcentration in the fatty tissue of organisms. This study was designed to assess the use of SPMD and biological tests (Comet assay and Ames test) for air monitoring. For this purpose an occupational environment with expected polycyclic aromatic hydrocarbons (PAHs) contamination (coke plant) was selected for a case study. The SPMDs were deployed in five occupational contaminated sites and in a control site. The SPMD dialysates were chemically analysed and examined for in vitro DNA-damaging activity in human cells (Jurkat) by Comet assay and for mutagenicity with the Ames test (TA98 strain, w/o S9). Total suspended particulates were also collected and analysed (GC–MS). No biological effect of SPMD extract was revealed in the control site. On the other hand, air samples collected with SPMDs within the coke plant showed variable degrees of genotoxic and mutagenic activity. The highest effects were associated with the highest PAH level recovered in the SPMDs extracts and in particulate samples.Results obtained support the sensitivity of biological tests associated to SPMD sampling for evaluating the health risk of potentially contaminated work environments highlighting the usefulness of SPMDs for environmental air quality monitoring.  相似文献   

16.
Abstract

Organochlorine pesticides (OCPs) were analyzed in three different ages (half-, 1.5-, 2.5-year-old) for needles and semi permeable membrane devices (SPMDs) at three deployment periods from sea level to 1881 meter above sea level. Individual HCHs concentrations ranged between 1.4 and 129?pg/g fw depending on the age and sampling season while 2.5-year-old needles showed higher HCHs levels compared to half and 1.5- year-old. Correlation between elevation and HCH concentration in SPMDs was found but not in needle samples. Concentrations of HCHs in SPMDs indicated clearly cold condensation effect on accumulation in winter period and increased with altitude. Concentrations of DDTs in half and 1.5-year-old needles were lower than 2.5-year-old needles. The highest total concentration of DDTs was detected in 1-year-period SPMD. Higher concentrations were found in 2.5-year-old needles for other OCPs. Seasonal and altitude-dependent changes were not observed for other OCPs in SMPDs. Total accumulation of OCPs in SPMDs were found higher than in needles. On the contrary, an increased accumulation rate was observed for HCHs in SPMD. In general, Total concentrations of DDTs and HCHs were similar to total of other OCPs in all altitudes when dominating endosulfan wasnot taken into account in the computation of total concentration of other OCPs.  相似文献   

17.
As an integral part of our continued development of water quality assessment approaches, we combined integrative sampling, instrumental analysis of widely occurring anthropogenic contaminants, and the application of a suite of bioindicator tests as a specific part of a broader survey of ecological conditions, species diversity, and habitat quality in the Santa Cruz River in Arizona, USA. Lipid-containing semipermeable membrane devices (SPMDs) were employed to sequester waterborne hydrophobic chemicals. Instrumental analysis and a suite of bioindicator tests were used to determine the presence and potential toxicological relevance of mixtures of bioavailable chemicals in two major water sources of the Santa Cruz River. The SPMDs were deployed at two sites; the effluent weir of the International Wastewater Treatment Plant (IWWTP) and the Nogales Wash. Both of these systems empty into the Santa Cruz River and the IWWTP effluent is a potential source of water for a constructed wetland complex. Analysis of the SPMD sample extracts revealed the presence of organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The bioindicator tests demonstrated increased liver enzyme activity, perturbation of neurotransmitter systems and potential endocrine disrupting effects (vitellogenin induction) in fish exposed to the extracts. With increasing global demands on limited water resources, the approach described herein provides an assessment paradigm applicable to determining the quality of water in a broad range of aquatic systems.  相似文献   

18.
Atmospheric sampling of organochlorine pesticides (OCPs) was conducted using Semi Permeable Membrane Devices (SPMDs) deployed in the Alps at different altitudinal transects for two consecutive exposure periods of half a year and a third simultaneous year-long period. Along all the altitude profiles, the sequestered amounts of OCPs increased in general with altitude. SPMDs were still working as kinetic samplers after half a year for the majority of the OCPs. However, compounds with the lowest octanol-air partition coefficient (Koa), reached equilibrium within six months. This change in the SPMD uptake was determined for the temperature gradient along the altitude profile influencing Koa, OCPs availability in the gaseous phase, and SPMD performance. In sum, it seems two effects are working in parallel along the altitude profiles: the change in SPMD performance and the different availability of OCPs along the altitudinal transects determined by their compound properties and concentrations in air.  相似文献   

19.
Triolein-filled semipermeable membrane devices (SPMDs) were deployed for 4 weeks in polluted water sources in Lithuania. The mixtures of pollutants sampled by the SPMDs were fractionated by size-exclusion chromatography (SEC). The fraction containing average molecular weight compounds such as polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides was screened by gas chromatography and mass spectrometry. The whole (non-fractionated) samples and their SEC fractions were tested in bioassays including Microtox, Mutatox, Daphnia pulex immobilization assay and the sister chromatid exchange (SCE) in human lymphocytes in vitro test. The Microtox test was most sensitive with the estimated EC(50) values in the range of milligrams or even micrograms per milliliter based on the amount of the SPMD triolein. Part of the observed toxicity was caused by elemental sulfur co-sampled by the SPMDs from sediments. The sum of toxicity equivalents of the SEC fractions was smaller than the relative toxicity of the whole samples indicating the presence of synergistic interactions in the complex mixtures of chemical pollutants. The toxic or genotoxic response induced by the chemical mixtures and their fractions was smaller in the D. pulex, Mutatox and SCE tests. In Mutatox, a positive response was only detected without the S9 metabolic activation which indicates the presence of mainly direct-acting mutagens in the samples. Interpretation of the Mutatox data was difficult due to the complexity of dose-response and time-response relationships. The study has demonstrated the potential as well as some limitations of SPMDs in the monitoring of biological effects of bioavailable organic pollutants in the aquatic environment.  相似文献   

20.
Consumer care products often contain UV filters, organic compounds which absorb ultraviolet light. These compounds may enter surface waters directly (when released from the skin during swimming and bathing) or indirectly via wastewater treatment plants (when released during showering or washed from textiles). Predicted and measured UV filter concentrations were compared in a regional mass balance study for two Swiss lakes: Lake Zurich, a typical midland lake which is also an important drinking water resource, and Hüttnersee, a small bathing lake. Both lakes are extensively used for recreational activities and considerable direct input of UV filters is thus expected. This input was estimated from the number of visitors at swimming areas around the lakes and a survey of the usage of sunscreen products among these visitors. Possible additional indirect input via wastewater treatment plants was not considered in this study. The quantitatively most important UV filters, as indicated by the survey data, ethylhexyl methoxycinnamate, octocrylene, 4-methylbenzylidene camphor, butyl methoxydibenzoylmethane, and benzophenone-3, all lipophilic compounds, were selected for analysis by gas chromatography-mass spectrometry. Concentrations of individual UV filters in water from Lake Zurich were low, ranging from <2 ng l(-1) (detection limit) to 29 ng l(-1), and somewhat higher at Hüttnersee, ranging from <2 to 125 ng l(-1), with the highest concentrations found in summer, consistent with direct inputs to the lakes during this time. The concentrations were clearly lower than predicted from input estimates based on the surveys. This may be in part due to (i) an overestimation of these inputs (e.g. less than the 50% wash-off of UV filters assumed to occur during swimming), and (ii) some removal of these compounds from the lakes by degradation and/or sorption/sedimentation. UV filters were also detected in semipermeable membrane devices (SPMDs) deployed at Lake Zurich and Greifensee, another midland lake, at concentrations of 80-950 ng SPMD(-1), confirming the presence of the compounds in surface waters and indicating a certain potential for bioaccumulation. SPMD-derived water concentrations were in the range of 1-10 ng l(-1) and thus corresponded well with those determined in water directly. No UV filters were detected above blank levels in SPMDs deployed at a remote mountain lake used for background measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号