首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
采用淋洗法,研究了垃圾堆肥中重金属在不同温度与模拟酸雨条件下的淋溶特征。结果表明,随着淋洗次数的增加,淋洗液中Cd、Cr、Cu、Ni和Pb的含量都有很大程度的减少。Cd、Cr、Cu和Ni 4种金属在模拟酸雨的情况下淋出量明显高于蒸馏水的情况,增幅都在116%和351%之间,差异显著(P<0.05)或极显著(P<0.01),而酸雨对Pb的淋出影响较小。在酸雨淋洗下,重金属的淋出率在30℃时达到最大,其中Ni随着温度的变化相对较小。而在蒸馏水淋洗下,重金属的淋出率随着温度的变化相对平稳。此外,5种重金属的淋出率明显不同,其中Cr和Ni的淋出率相对较大,Pb最小。  相似文献   

2.
Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P?+?T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn?>?Cu?>?Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P?+?T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic-C-rich soil. More than 73 % P in the amendments remained in the upper 0–10 cm soil layers. However, leaching of P from soluble TSP was significant with 24.3 % of P migrated in the leachate in the organic-C-poor soil. The mobility of heavy metals in the P-treated soil varies with nature of P sources, heavy metals, and soils. Caution should be taken on the multi-metal stabilization since the P amendment may immobilize some metals while promoting others’ mobility. Also, attention should be paid to the high leaching of P from soluble P amendments since it may pose the risk of excessive P-induced eutrophication.  相似文献   

3.
Wang S  Mulligan CN 《Chemosphere》2009,74(2):274-279
Arsenic and heavy metal mobilization from mine tailings is an issue of concern as it might pose potential groundwater or ecological risks. Increasing attention recently has been focused on the effects of natural organic matter on the mobility behavior of the toxicants in the environment. Column experiments were carried out in this research study to evaluate the feasibility of using humic acid (HA) to mobilize arsenic and heavy metals (i.e., Cu, Pb and Zn) from an oxidized Pb-Zn mine tailings sample collected from Bathurst, New Brunswick, Canada. Capillary electrophoresis analyses indicated that arsenate [As(V)] was the only extractable arsenic species in the mine tailings and the addition of HA at pH 11 did not incur the oxidation-reduction or methylation reactions of arsenic. A 0.1% HA solution with an initial pH adjusted to 11 was selected as the flushing solution, while distilled water (initial pH adjusted to 11) was used as the control to account for the mobilization of arsenic and the heavy metals by physical mixing and the effect of pH. It was found that the HA could significantly enhance the mobilization of arsenic and heavy metals simultaneously from the mine tailings. After a 70-pore-volume-flushing, the mobilization of arsenic, copper, lead and zinc reached 97, 35, 838 and 224 mg kg(-1), respectively. The mobilization of arsenic and the heavy metals was found to be positively correlated with the mobilization of Fe in the presence of the HA. Moreover, the mobilization of arsenic was also correlated well with that of the heavy metals. The mobilization of co-existing metals to some extent might enhance arsenic mobilization in the presence of the HA by helping incorporate it into soluble aqueous organic complexes through metal-bridging mechanisms. Use of HA in arsenic and heavy metal remediation may be developed as an environmentally benign and possible effective remedial option to reduce and avoid further contamination.  相似文献   

4.
A washing process was studied to evaluate the efficiency of saponin on remediating heavy metal contaminated soils. Three different types of soils (Andosol: soil A, Cambisol: soil B, Regosol: soil C) were washed with saponin in batch experiments. Utilization of saponin was effective for removal of heavy metals from soils, attaining 90-100% of Cd and 85-98% of Zn extractions. The fractionations of heavy metals removed by saponin were identified using the sequential extraction. Saponin was effective in removing the exchangeable and carbonated fractions of heavy metals from soils. In recovery procedures, the pH of soil leachates was increased to about 10.7, leading to separate heavy metals as hydroxide precipitates and saponin solute. In addition recycle of used saponin is considered to be effective for the subsequent utilization. The limits of Japanese leaching test were met for all of the soil residues after saponin treatment. As a whole, this study shows that saponin can be used as a cleaning agent for remediation of heavy metal contaminated soils.  相似文献   

5.
Various environmental factors are expected to affect the mobility of elements in chemically stabilized soils. The aim of this study was to evaluate the effects of pH, oxidizing-reducing potential (Eh), liquid-to-solid ratio (L/S), presence of organic matter (OM) and microbial activity (MA) on the mobility of chromium, copper, arsenic and zinc in zerovalent iron (Fe(0))-stabilized soil. A 2(5) full factorial design was applied to assess the leaching of the elements from the treated soil. The factor having the most impact on the mobility of Cr, Cu and Zn was pH; low pH (3) led to the release of these elements. Arsenic remobilization was controlled by L/S and MA, whilst Eh, though also significant, had less influence. In the identified worst-case scenarios, more than half of the total Zn and Cu and 14% of As can be expected to remobilize from the treated soil. The leaching procedure concerning sample agitation and type of filtration showed to substantially affect the results of As leaching, especially in OM rich soil.  相似文献   

6.
Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity.  相似文献   

7.
Abstract

An assessment of the short- and long-term hazards from municipal solid waste incinerator (MSWI) ash is made through the elemental analysis of 40 to 50 elements in the ash and leachates produced by several leaching procedures. The ash was analyzed using neutron activation analysis (NAA) and x-ray fluorescence (XRF). The leachates were analyzed using NAA and inductively-coupled plasma atomic emission spectroscopy (ICP). The leaching dynamics of an ash monofill were modelled with a series of extractions using simulated acid rain. An initial spike of the metals Ag, Ba, Be, Cr, Cu, Mo, Pb, Sr, and Zn in the leachates appears to be the greatest hazard posed by MSWI ash monofills. The elements As, Cd, Cu, Hg, Pb, S, and Zn were identified as potential long term hazards utilizing a sequential extraction procedure which approximates the total amount of the elements available over the lifetime of the monofill.

The pH of the resulting leachate is the single greatest factor governing the concentration of metals in solution, more important than the concentration of the element in the ash. These results are applied to an assessment of the suitability of the Toxicity Characteristic Leaching Procedure (TCLP) in measuring leaching potential of an MSWI ash monofill.  相似文献   

8.
Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal–phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.  相似文献   

9.
Red mud (RM) is a strongly alkaline residue generated in enormous amounts worldwide from bauxite refining using the Bayer chemical process. RM is composed mainly of Fe, Ti and Al oxides and hydroxides, but it also contains an array of trace metals and metalloids at different concentrations. The purpose of this paper is to assess the potential mobility of metals in RM, with special emphasis on pH effect. The ‘operational’ distribution and leachability of metals within/from RM was studied by applying a sequential extraction procedure (SEP) and several leaching tests (rapid titration, equilibration acidification, batch leaching with acetic acid and also the toxicity characteristics leaching procedure (TCLP) and the DIN 38414-S4 procedures, used as reference methods) carried out at different pH, solid/liquid ratio, extraction period and type of acid (HCl or acetic acid). Chemical analysis showed that, in addition to the major metals Fe, Al and Ti, RM contains several trace metals, some of them (Cr, Cu and Ni) in concentrations exceeding the regulatory limits. SEP showed that a majority of the metals in the RM (between the 32.2?±?8.5 for Cd and 95.3?±?0.4 % for Ni) were found in the residual fraction, suggesting that they are not readily mobile under normal environmental conditions. Leaching tests performed at different pH showed that a significant fraction of the metals is mobilised from RM only under very strong acid conditions (pH?<?2), whereas Al is released in considerable amounts at pH?<?5.3. Among the trace metals, Cr requires special attention because of its relative high concentration in RM and the higher concentrations of this metal mobilised at low pH. The leaching tests using acetic acid showed that the standard TCLP largely underestimates the release of trace metals from RM, and therefore it is not advisable to evaluate the actual potential leaching of trace metals from this residue.  相似文献   

10.
Leaching of heavy metals from contaminated soils using EDTA   总被引:40,自引:0,他引:40  
Ethylenediaminetetraacetic acid (EDTA) extraction of Zn, Cd, Cu and Pb from four contaminated soils was studied using batch and column leaching experiments. In the batch experiment, the heavy metals extracted were virtually all as 1:1 metal-EDTA complexes. The ratios of Zn, Cd, Cu and Pb of the extracted were similar to those in the soils, suggesting that EDTA extracted the four heavy metals with similar efficiency. In contrast, different elution patterns were obtained for Zn, Cd, Cu and Pb in the column leaching experiment using 0.01 M EDTA. Cu was either the most mobile or among the most mobile of the four heavy metals, and its peak concentration corresponded with the arrival of full strength EDTA in the leachate. The mobility of Zn and Cd was usually slightly lower than that of Cu. Pb was the least mobile, and its elution increased after the peaks of Cu and Zn. Sequential fractionations of leached and un-leached soils showed that heavy metals in various operationally defined fractions contributed to the removal by EDTA. Considerable mobilisation of Fe occurred in two of the four soils during EDTA leaching. Decreases in the Fe and Mn oxide fraction of heavy metals after EDTA leaching occurred in both soils, as well as in a third soil that showed little Fe mobilisation. The results suggest that the lability of metals in soil, the kinetics of metal desorption/dissolution and the mode of EDTA addition were the main factors controlling the behaviour of metal leaching with EDTA.  相似文献   

11.
Udovic M  Plavc Z  Lestan D 《Chemosphere》2007,70(1):126-134
The effect of two ecologically contrasting earthworm species Eisenia fetida (epigeic) and Octolasion tyrtaeum (endogeic) on the fractionation (accessed using sequential extractions), mobility (toxicity characteristic leaching procedure, TCLP) and oral bioavailability (Ruby's physiologically based extraction test, PBET) of Pb, Zn and Cd was studied before and after soil remediation with soil leaching. Twenty-step leaching, with 2.5 mmol kg(-1) EDTA used in each step, removed 58.4%, 25.0% and 68.0% of initial soil Pb, Zn and Cd, respectively, shifted the fractionation of residual heavy metals toward less labile forms, and decreased their mobility by 83.7%, 80.3%, and 90.9%. Pb oral bioavailability was reduced by 3.1-times (in each stomach and intestinal phase). After soil leaching, both earthworm species enriched the carbonate soil fraction in their casts with residual Pb, and increased the Pb bioavailability in the simulated intestinal phase by a factor of 2.4 (E. fetida) and 2.8 (O. tyrtaeum). The concentration of Pb in TCLP leachate from E. fetida casts was 6.2-times higher than in the bulk of the remediated soil. These results indicate that the effect of biotic factors on the availability of heavy metals residual in soil after soil leaching requires consideration.  相似文献   

12.
Leaching of sludge-borne trace elements has been observed in experimental and field studies. The role of microbial processes in the mobilization of trace elements from wastewater sludge is poorly defined. Our objectives were to determine trace element mobilization from sludge subjected to treatments representing microbial acidification, direct chemical acidification and no acidification, and to determine the readsorption potential of mobilized elements using calcareous sand. Triplicate columns (10-cm diameter) for incubation and leaching of sludge had a top layer of digested dewatered sludge (either untreated, acidified with H2SO4, or limed with CaCO3; all mixed with glass beads to prevent ponding) and a lower glass bead support bed. Glass beads in the sludge layer, support layer or both were replaced by calcareous sand in four treatments used for testing the readsorption potential of mobilized elements. Eight sequential 8-day incubation and leaching cycles were operated, each consisting of 7.6 d of incubation at 28 degrees C followed by 8 h of leaching with synthetic acid rain applied at 0.25 cm/h. Leachates were analyzed for trace elements, nitrate and pH, and sludge layer microbial respiration was measured. The largest trace element, nitrate and S losses occurred in treatments with the greatest pH depression and greatest microbial respiration rates. Cumulative leaching losses from both microbial acidification and direct acidification treatments were > 90% of Zn and 64-80% of Cu and Ni. Preventing acidification with sludge layer lime or sand restricted leaching for all trace elements except Mo. Results suggested that the primary microbial role in the rapid leaching of trace elements was acidification, with results from direct acidification being nearly identical to microbial acidification. Microbial activity in the presence of materials that prevented acidification mobilized far lower concentrations of trace elements, with the exception of Mo. Trace elements mobilized by acidification were readsorbed by calcareous sand when present.  相似文献   

13.
模拟酸雨对大宝山尾矿淋滤实验研究   总被引:1,自引:0,他引:1  
在模拟酸雨作用下,研究了大宝山尾矿中重金属Cd、Pb及Mn的释放规律及动力学。结果表明,在淋滤液不同酸度(pH为5.6、4.8、3.0)条件下,不同重金属呈现出不同的释放规律。随着淋滤量的增加,淋出液pH逐渐上升;Cd和Mn的释放可分为快速释放和慢速释放2个阶段,Pb的释放速度一直相对稳定。随着淋滤液pH的降低,淋出液pH降低,重金属的释放量及释放速度增加;淋滤液pH对3种重金属释放的影响程度为Pb>Mn>Cd。Cd和Mn的释放可用准二级动力学方程及Elovich方程很好拟合,准二级动力学方程更优;Pb的释放可用双常数方程和零级动力学方程很好拟合。  相似文献   

14.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   

15.
The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N-viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co-compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor x S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot(-1) for each amendment (equivalent to 50 t ha(-1) of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3-N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3-N and inorganic P concentration significantly compared with the non-legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3- could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co-compost and biosolids, but decreased by coal ash and N-viro soil by virtue of improved adsorption. The leguminous cover crop, sunn hemp, when incorporated into the soil, can cause the concentration of NO3-N to increase by about 7 fold, and that of inorganic P by about 23% over the non-legume. Regarding the metals, biosolids, N-viro soil and coal ash significantly increased Ca and Mg concentrations in leachates. Copper concentration in leachate was increased by application of biosolids, while Fe concentration in leachates was increased by biosolids, coal ash and co-compost. The concentrations of Zn, Mo and Co in leachate were increased by application of coal ash. The concentrations of heavy metals in leachates were very low and unlikely to be harmful, although they were increased significantly by coal ash application.  相似文献   

16.
The impact of water saturation level (oxidizing-reducing environment) on As and metal solubility in chromium, copper, arsenic (CCA)-contaminated soil amended with Fe-containing materials was studied. The soil was mixed with 0.1 and 1 wt% of iron grit (Fe(0)) and 1, 7 and 15 wt% of oxygen scarfing granulate (OSG, a by-product of steel processing). Solubility of As and metals was evaluated by a batch leaching test and analysis of soil pore water. Soil saturation with water greatly increased As solubility in the untreated as well as in the Fe-amended soil. This was related to the reductive dissolution of Fe oxides and increased concentration of As(III) species. Fe amendments showed As reducing capacity under both oxic and anoxic conditions. The cytotoxicity of the soil pore water correlated with the concentration of As(III). The Fe-treatments as well as water saturation of soil were less significant for the solubility of Cu, Cr and Zn than for As. The batch leaching test used for waste characterization substantially underestimated As solubility that could occur under water-saturated (anaerobic) conditions. In the case of soil landfilling, other techniques than Fe-stabilization of As containing soil should be considered.  相似文献   

17.

A pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl2-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.38 to 1.7 mg kg?1), and a downward trend in CaCl2-extractable and total leaching loss of heavy metals were observed. The combined earthworm and manure treatment decreased CaCl2-extractable Zn, Cd, and Pb. For Na4P2O7-extractable metals, Cd and Pb were decreased with increasing manure application rate. Application of earthworm alone did not contribute to the remediation of heavy metal polluted soils. Considering the effects on heavy metal immobilization and cost, the application of 6% manure was an alternative approach for treating contaminated soils. These findings provide valuable information for risk management during immobilization of heavy metals in contaminated soils.

  相似文献   

18.
Juwarkar AA  Nair A  Dubey KV  Singh SK  Devotta S 《Chemosphere》2007,68(10):1996-2002
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.  相似文献   

19.
The effect of sludge processing (digested dewatered, pelletized, alkaline-stabilized, composted, and incinerated), soil type and initial soil pH on trace metal mobility was examined using undisturbed soil columns. Soils tested were Hudson silt loam (Glossaquic Hapludalf) and Arkport fine sandy loam (Lamellic Hapludalf), at initial pH levels of 5 and 7. Sludges were applied during four accelerated cropping cycles (215 tons/ha cumulative application for dewatered sludge; equivalent rates for other sludges), followed by four post-application cycles. Also examined (with no sludge applications) were Hudson soil columns from a field site that received a heavy loading of sludge in 1978. Romaine (Lactuca sativa) and oats (Avena sativa) were planted in alternate cycles, with oats later replaced by red clover (Trifolium pratense). Soil columns were watered with synthetic acid rainwater, and percolates were analyzed for trace metals (ICP spectroscopy), electrical conductivity and pH. Percolate metal concentrations varied with sludge and soil treatments. Composted sludge and ash had the lowest overall metal mobilities. Dewatered and pelletized sludge had notable leaching of Ni, Cd and Zn in Arkport soils, especially at low pH. Alkaline-stabilized sludge had the widest range of percolate metals (relatively insensitive to soils) including Cu, Ni, B and Mo. Old site column percolate concentrations showed good agreement with previous field data. Little leaching of P was observed in all cases. Cumulative percolate metal losses for all treatments were low relative to total applied metals. Leachate and soil pH were substantially depressed in dewatered and pelletized sludge soil columns and increased for alkaline-stabilized and ash treatments.  相似文献   

20.
The application of extracting aqueous solutions with cyclodextrins in several soil remediation technologies has been increasingly studied but little is known about their removal capacities toward the inorganic species. Herein, the effectiveness of cyclodextrins (CDs) in extracting arsenic, copper, and iron from a mining soil is presented. In a preliminary test of four types of CD aqueous solutions, only the addition of carboxylmethyl-beta-cyclodextrin CMCD (a cyclodextrin derivative) led to a significant enhancement in arsenic removal. An increase in the concentration of copper and iron in the leachates was also observed with CMCD. Kinetic study of arsenic release was carried out at two temperatures (20 and 35 degrees C). The arsenic concentration in the leachates increases with increasing cyclodextrin concentration. At an 80 mM CMCD concentration, arsenic, copper, and iron released in filtrates were about 20-, 1,000-, and 4,000-fold greater, respectively, than that obtained using deionized water. In the soil system, the CMCD capacity removal was found to be higher for cations than for arsenic. Because the tetrachlorophenol can co-occur with arsenic and copper in several contaminated sites, its solubilization by CMCD was also investigated. Extraction experiments were performed to extract 2,3,4,6 tetrachlorophenol (TeCP) in spiked soil with CMCD. The results of batch experiments have shown that CMCD could significantly increase the TeCP extraction from soil. CD sorption on soils as quantified by a fluorescence technique was low, indicating no significant loss of CD during the leaching experiments. The use of CMCD as a flushing agent to enhance the removal of both inorganic and organic pollutants from mixed-contaminated soils appears as a promising remediation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号