首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A theoretical and experimental study of bisphenol A (BPA) degradation by the UV/H2O2 process in water is presented. The effects of the H2O2 concentration and the specific rate of photon emission (EP,0) on BPA degradation were investigated. A kinetic model derived from a reaction sequence was employed to predict BPA and hydrogen peroxide concentrations over time using an annular photochemical reactor in batch recirculation mode. The local volumetric rate of photon absorption (LVRPA) inside the photoreactor was computed using a Line Source with Parallel Plane emission model (LSPP). From the proposed kinetic model and the experimental data, the second order rate constants of the reactions between hydroxyl radicals and the main reacting species (H2O2 and BPA) were estimated applying a nonlinear regression method. A good agreement between the kinetic model and experimental data, for a wide range of operating conditions, was obtained. For BPA, H2O2, and TOC concentrations, the calculated root means square errors (RMSE) were 2.3?×?10??2, 9.8?×?10??1, and 9.0?×?10??2 mmol L??1, respectively. The simplified kinetic model presented in this work can be directly applied to scaling-up and reactor design, since the estimated kinetic constants are independent of the reactor size, shape, and configuration. Further experiments were made by employing low BPA initial concentration (100 μg L??1) in water and real wastewater. A lower degradation rate of BPA was observed in the real wastewater, although the UV/H2O2 process has also been able to completely degrade the target pollutant in less than 1 h.

  相似文献   

2.
Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces   总被引:6,自引:0,他引:6  
Bisphenol A (BPA) can be decomposed photocatalytically under UV-illumination in aqueous TiO2 dispersion. The two methyl groups in BPA were initially attacked with .OH and/or .OOH radicals having strong oxidizing power, followed by the cleavage of the two phenyl moieties. Finally, the photomineralization to CO2 gas occurred via oxidative processes involving carboxylic acids and aldehydes. The decomposition of structurally similar substances of 4,4'-ethylidenebisphenol (EBP) and 4,4'-methylenebisphenol (MBP) was compared. The decomposition of BPA gave more kinds of intermediates such as 4-isopropylphenol, 4-ethylphenol, etc. On the other hand, that of EBP gave mainly 4-isopropylphenol and that of MBP gave a predominant product of 4-hydroxybenzaldehyde. These photooxidative pathways were proposed on the base of the evidence of oxidative intermediate formation.  相似文献   

3.
Environmental Science and Pollution Research - Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained...  相似文献   

4.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

5.
Bisphenol A (BPA) is one of a number of potential endocrine disruptors which may affect normal hormonal function. In this study, human UDP-glucuronosyltransferase (UGT) isoforms involved in BPA glucuronidation were studied by kinetic analyses using human liver microsomes and recombinant human UGTs expressed in insect cells (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17). BPA glucuronidation was catalyzed by UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7 and UGT2B15 as well as by human liver microsomes. Among these UGTs, UGT2B15 showed the highest activity of BPA glucuronidation at low- (1.0 microM) and high- (20 microM) substrate concentrations. Kinetic analyses of BPA glucuronidation were performed by constructing Michaelis-Menten and Eadie-Hofstee plots. The kinetic profile of BPA glucuronidation by pooled human liver microsomes and UGT2B15 was monophasic, the K(m) and V(max) values were 6.39 microM and 4250 pmol min(-1)mg(-1)protein for pooled human liver microsomes, and 8.68 microM and 873 pmol min(-1)mg(-1)protein for UGT2B15, respectively. The K(m) values for BPA glucuronidation by pooled human liver microsomes and UGT2B15 were similar. These findings demonstrate that BPA is mainly glucuronidated by UGT2B15 in human liver microsomes, and suggest that this UGT isoform plays important roles in the detoxification and elimination of BPA.  相似文献   

6.
Fate of 14C-bisphenol A in soils   总被引:8,自引:0,他引:8  
Fent G  Hein WJ  Moendel MJ  Kubiak R 《Chemosphere》2003,51(8):735-746
Bisphenol A (BPA; 2,2-(4,4(')-dihydroxydiphenyl)propane) is predominantly used as an intermediate in the production of polycarbonate plastics and epoxy resins. Traces of BPA released into the environment can reach the soil via application of sewage sludge from wastewater treatment systems that receive wastewaters containing BPA, or from leachate from uncontrolled landfills. The biodegradability of BPA has been previously investigated in several studies designed to simulate surface waters and biological wastewater treatment systems. However, there is little information available about the fate of BPA in soil. Therefore, laboratory soil degradation and batch adsorption studies were conducted with 14C-BPA and four soils according to international guidelines. The soils represented a broad range of physico-chemical properties. An important result of the degradation study was that, independent of the soil type, 14C-BPA was rapidly dissipated and not detectable in soil extracts following 3 days of incubation. Based on this result, a dissipation half-life of less than 3 days was estimated. The major route of dissipation of 14C-BPA in soil was the formation of bound residues that could not be recovered by exhaustive Soxhlet extraction. 14C-BPA was also shown to be transiently converted to up to five metabolites, but within 3 days, neither 14C-BPA nor 14C-metabolites were detectable in the soils. After 120 days incubation, significant amounts (up to 20% of the radioactivity applied) of the parent compound were recovered as 14CO(2). Soil adsorption experiments indicated that the distribution coefficients (K(oc)) were between 636 and 931, classifying BPA as having low mobility for all tested soils. From the results of this study, it was concluded that if BPA reaches the soil compartment, it is not expected to be stable, mobile, or bioavailable.  相似文献   

7.
Environmental Science and Pollution Research - Bisphenol A (BPA) is a plasticizer used widely in many industrial products and is now well established as an endocrine-disrupting chemical (EDC). BPA...  相似文献   

8.
9.
The extensive use of Bisphenol A (BPA) in the plastics industry has led to increasing reports of its presence in the aquatic environment, with concentrations of ng L?1 to μg L?1. Various advanced oxidation processes, including ozonation, have been shown to effectively degrade BPA. This paper reviews the current advancements in using ozone to remove BPA from water and wastewater.Most of the published work on the oxidation of BPA by ozone has focused on the efficiency of BPA removal in terms of the disappearance of BPA, and the effect of various operational parameters such as ozone feed rate, contact time and pH; some information is available on the estrogenic activity of the treated water. Due to increasing operational reliability and cost effectiveness, there is great potential for industrial scale application of ozone for the treatment of BPA. However, there is a significant lack of information on the formation of oxidation by-products and their toxicities, particularly in more complex matrices such as wastewater, and further investigation is needed for a better understanding of the environmental fate of BPA.  相似文献   

10.
Environmental Science and Pollution Research - Bisphenol S (BPS) is an analog of bisphenol A, which is used as substitute of BPA in many products like airport luggage tags, baby bottles, plastics,...  相似文献   

11.
Bisphenol A (BPA) is a ubiquitous high volume industrial chemical that is an estrogen and an environmental endocrine disrupting chemical. Bisphenol A is used extensively in the production of consumer goods, polycarbonate plastics, epoxy resins and coatings used to line metallic food and beverage cans. There is great concern regarding the possible harmful effects from exposures that result from BPA leaching into foods and beverages from packaging or storage containers. The objective of this study was to independently assess whether BPA contamination of water was occurring from different types of reusable drinking bottles marketed as alternatives to BPA-containing polycarbonate plastics. Using a sensitive and quantitative BPA-specific competitive enzyme-linked immunosorbent assay we evaluated whether BPA migrated into water stored in polycarbonate or copolyester plastic bottles, and different lined or unlined metallic reusable water bottles. At room temperature the concentration of BPA migrating from polycarbonate bottles ranged from 0.2 to 0.3 mg L−1. Under identical conditions BPA migration from aluminium bottles lined with epoxy-based resins was variable depending on manufacturer ranging from 0.08 to 1.9 mg L−1. Boiling water significantly increased migration of BPA from the epoxy lined bottles. No detectable BPA contamination was observed in water stored in bottles made from Tritan™ copolyester plastic, uncoated stainless steel, or aluminium lined with EcoCare™. The results from this study demonstrate that when used according to manufacturers’ recommendations reusable water bottles constructed from “BPA-free” alternative materials are suitable for consumption of beverages free of BPA contamination.  相似文献   

12.
Kim A  Li CR  Jin CF  Lee KW  Lee SH  Shon KJ  Park NG  Kim DK  Kang SW  Shim YB  Park JS 《Chemosphere》2007,68(7):1204-1209
Bisphenol A (BPA), generally known as bisphenols, has been identified as a potential estrogenic substance. BPA must be conjugated to carrier protein and BSA was commonly used. 4,4-Bis(4-hydroxyphenyl) valeric acid (BHPVA) has a bisphenolic structure and a long carbon chain with a reactive carboxyl group on the end. In this study, BHPVA-BSA was used to produce polyclonal antibody against bisphenolic structure, and a modified competitive ELISA method for quantification of BPA was developed. This system was based on BHPVA-BSA for polyclonal antibody production against bisphenolic structure, and BHPVA-HRP for determination of BPA substituting detection antibody in competitive reaction. Recovery was assessed at 10 different concentrations (2-1000 ng/ml) of BHPVA, and the recovery range was from 96.3% to 107.2%. The variation was from 6.2% to 9.8% for intra assay and from 10.1% to 12.6% for inter assay. The quadratic was used to establish the curve regression. The range was found to be between 2 and 1000 ng/ml. This modified competitive ELISA method has proven to be a very useful tool for quantification of BPA without the unexpected interaction of BSA and anti-BSA polyclonal antibody.  相似文献   

13.
Sajiki J  Masumizu T 《Chemosphere》2004,57(4):241-252
Identification of reactive oxygen species (ROS) that contribute to bisphenol-A (BPA) degradation and monitoring of BPA at various concentrations in human serum under Fenton reaction conditions were carried out using electron spin resonance (ESR) spectrophotometry and high performance liquid chromatography with electrochemical detection (HPLC-ECD). BPA recovery decreased with increasing Fe concentration and time, both with a Fenton reaction using Fe(II), and with a Fenton-like reaction using Fe(III). In these reactions, BPA dose-dependently decreased the intensity of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-*OH, up to 1 microg/ml BPA, and no change in DMPO-O(2)(?-) intensity was observed. The decrease in BPA recovery was inhibited strongly by addition of serum under Fenton-like reaction conditions, and there was a negative correlation between turbidity and BPA recovery. To clarify the mechanism by which serum inhibits BPA degradation, the relationship between BPA recovery and sample turbidity, and characteristics of the precipitates were investigated using spectrophotometry and X-ray analysis. The precipitate formed in the serum-containing sample consisted of C, S, O, P and Fe. BPA degradation was also inhibited under Fenton-like reaction conditions in phosphate buffered saline (PBS), and a precipitate consisting of O, P, and Fe appeared. Precipitates also appeared in authentic albumin and gamma-globulin when sulfate was added with Fenton reagents. After precipitate removal, both Fe and protein concentrations in the supernatant of the protein solutions with sulfate decreased with increasing Fe addition. We demonstrate here that hydroxyl radical generation from Fenton or Fenton-like reactions can degrade BPA, and that serum strongly inhibits BPA degradation, not only by competing with BPA for hydroxyl radicals, but also by trapping Fe with oxidative components present in the serum.  相似文献   

14.
Bisphenol A (BPA) (CAS 80-05-7) was analyzed in receiving waters upstream and downstream of US manufacturers (1996 and 1997) and processors (1997) during seasonal low flow periods. BPA was not detected (< 1 microgram/l) in any surface water sample in 1996 or at six of seven sites in 1997. Concentrations near the seventh site ranged from 2 to 8 micrograms/l; however, its receiving stream had no measurable flow and concentrations represent undiluted effluent. All surface water concentrations from this and other studies were less than the freshwater predicted no effect concentration (PNEC) of 64 micrograms/l, suggesting that BPA discharges from manufacturing and processing facilities to surface water do not pose an environmental concern.  相似文献   

15.

A new method for bisphenol A (BPA) degradation in aqueous solution was developed. The characteristics of BPA degradation in a heterogeneous ultraviolet (UV)/Fenton reaction catalyzed by FeCo2O4/TiO2/graphite oxide (GO) were studied. The properties of the synthesized catalysts were characterized using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. FeCo2O4 and TiO2 were grown as spherical shape, rough surface, and relatively uniform on the surface of GO (FeCo2O4/TiO2/GO). Batch tests were conducted to evaluate the effects of the initial pH, FeCo2O4/TiO2/GO dosage, and H2O2 concentration on BPA degradation. In a system with 0.5 g L−1 of FeCo2O4/TiO2/GO and 10 mmol L−1 of H2O2, approximately 90 % of BPA (20 mg L−1) was degraded within 240 min of UV irradiation at pH 6.0. The reused FeCo2O4/TiO2/GO catalyst retained its activity after three cycles, which indicates that it is stable and reusable. The heterogeneous UV/Fenton reaction catalyzed by FeCo2O4/TiO2/GO is a promising advanced oxidation technology for treating wastewater that contains BPA.

  相似文献   

16.
Bisphenol A (BPA) is one of the representative compounds of the endocrine disrupting compounds group and the highest volume chemicals produced worldwide. As a result, BPA is often detected in many soil and water environments. In this study, we demonstrated the transformation of BPA from liquid cultures inoculated with hyper lignin-degrading fungus Phanerochaete sordida YK-624. Under non-ligninolytic condition, approximately 80% of BPA was eliminated after 7 d of incubation. High-resolution electrospray ionization mass spectra and nuclear magnetic resonance analyses of a metabolite isolated from the culture supernatant suggested that BPA was metabolized to hydroxy-BPA, 4-(2-(4-hydroxyphenyl)propan-2-yl)benzene-1,2-diol, which has a much lower estrogenic activity than BPA. In addition, we investigated the effect of the cytochrome P450 inhibitor piperonyl butoxide (PB) on the hydroxylation of BPA, markedly lower transformation activity of BPA was observed in cultures containing PB. These results suggest that cytochrome P450 plays an important role in the hydroxylation of BPA by P. sordida YK-624 under non-ligninolytic condition.  相似文献   

17.
Bisphenol A (BPA), an estrogenic endocrine disrupting chemical, has been reported to affect embryos and alter their postnatal development. In the present study, we measured the concentrations of BPA in human colostrum by a competitive enzyme-linked immunosorbent assay (ELISA) with the aim of understanding the present status of BPA burden in human breast milk in Shizuoka, Japan. Human colostral samples were collected from 101 healthy mothers within three days after delivery. The BPA concentrations of colostral samples were estimated by ELISA after the acetonitrile extraction and solid phase extraction column purification. BPA in 101 samples was detected in the concentration range of 1-7 ng ml(-1). The mean concentration of BPA was 3.41+/-0.13 (mean+/-SD) ng ml(-1). This is the first demonstration as to what BPA concentrations are in human colostrum. The BPA concentrations in colostrum were higher than those in blood sera samples obtained from healthy women in a previous study. In our study, there was no significant correlation between the concentrations of BPA in colostrum and the age and parity of mothers.  相似文献   

18.
Decolorizing of lignin wastewater using the photochemical UV/TiO2 process   总被引:1,自引:0,他引:1  
Chang CN  Ma YS  Fang GC  Chao AC  Tsai MC  Sung HF 《Chemosphere》2004,56(10):1011-1017
Studies on applying the photochemical UV/TiO2 oxidation process to treat the lignin-containing wastewater for dissolved organic carbon (DOC), color and reducing A254 (the absorption at the wavelength of 254 nm) have been carried out. The data obtained in this study demonstrate that the UV/TiO2 process is effective in oxidizing the lignin thus reducing the color and DOC of the wastewater treated. The combined UV/TiO2 treatment can achieve better removal of DOC and color than the UV treatment alone. Color removal, based on American Dye Manufacture Index (ADMI) measurement, is greater than 99% if the pH is maintained at 3.0 with the addition of 1 g l(-1) TiO2. When 10 g l(-1) TiO2 is applied, the oxidation reduction potential (ORP) value is reached to result in an 88% removal of both DOC and color. A model was developed based on the variation of ORP during the photochemical reaction to simulate the decoloring process. The proposed model can be used to predict the color removal efficiency of the UV/TiO2 process.  相似文献   

19.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

20.
In this study the actual presence of the suspected endocrine disrupter Bisphenol A (BPA) in water systems was studied in the Netherlands. BPA was shown to be present in Dutch surface water at levels up to 330 ng/l, and one occasional observation of 21 microg/l. During the three sampling periods, 60-80% of the samples, most from marine and estuarine locations, contained BPA levels below the limit of quantification (14-40 ng/l). At a selected number of locations the presence of BPA in fish was studied, which showed that BPA varied from 2 to 75 ng/g in the liver and 1 to 11 ng/g in the muscle. Based on present measured concentrations in surface water and on literature derived toxicity data it was concluded that ecotoxicological effects nor estrogenic effects are likely to occur in the field situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号