首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mature beech trees (Fagus sylvatica) grown at two different altitudes in the Bavarian forest were compared with young beech trees grown at nearby field sites or in phytotrons for their macroscopic and physiological responses to different ozone (O(3)) exposures. Cumulative O(3) exposure expressed as the sum of hourly mean concentrations above the canopy ranged between 100 and 150 microl l(-1) h, with the vertical O(3) profiles at the higher altitude site being enhanced by 30%. O(3) profiles at all sites were reduced by up to 20% with increasing depth within and beneath the canopy. The leaf discoloration that developed in the absence of premature leaf loss was similar in the sun foliage of mature and young trees (including plant grown in the phytotron). Injury became apparent at low O(3) exposures, expressed as accumulated hourly means over a threshold of 40 nl l(-1) (AOT40 <3.5 microl l(-1) h) at the lower site in both the mature trees and the young beech at the field site, but only occurred when AOT40 values reached 7 microl l(-1) h at the upper site, and 6 microl l(-1) h in the phytotrons. However, the association between injury and O(3) exposure was improved when cumulative ozone uptake to sun leaves was the ozone index, used with values of about 3 mmol m(-2) resulting in visible injury in both mature and young beech growing in phytotrons. Under high ozone exposure levels of inositol were lowered, whilst concentrations of lignin-like materials were enhanced in mature beech. Similar responses were observed in young beech grown in phytotrons. As the sun foliage was affected by only a small and variable extent each year, the seasonal O(3) impact at high altitude did not appear to pose an acute risk to mature beech trees.  相似文献   

2.
Stand level O(3) fluxes were calculated using water balance calculations for 21 Common beech (Fagus sylvatica L.) stands and O(3) data from 20 monitoring stations in Southern Germany. For this intention, the daily loss of water by evapotranspiration per stand area was set against the daily O(3) uptake. During the last 30 years, O(3) uptake ranges between 0 and 187 mmol ha(-1) d(-1) per stand area. Cumulative O(3) uptake (CUO(3)), ranging between 0.1 and 0.7 mmol m(-2) yr(-1) per stand area, shows increasing trends since 1971 with considerably greater values at high altitudes. Effects in radial growth were used to derive an initial approximate critical threshold value for O(3) impacts on the vitality and growth of mature beech stands in Southern Germany. It is concluded that this concept of O(3) flux estimation in combination with dendroecological analyses offers both a site specific and regional applicable approach to derive new critical levels for O(3).  相似文献   

3.
In highly polluted sites, stomatal behavior is sluggish with respect to light, vapor pressure deficit, and internal CO2 concentration (Ci) and poorly described by existing models. Statistical models were developed to estimate stomatal conductance (gs) of 40-year-old ponderosa pine at three sites differing in pollutant exposure for the purpose of calculating O3 uptake. Gs was estimated using julian day, hour of day, pre-dawn xylem potential and photosynthetic photon flux density (PPFD). The median difference between estimated and observed field gs did not exceed 10 mmol H2O m(-2) s(-1), and estimated gs within 95% confidence intervals. 03 uptake was calculated from hourly estimated gs, hourly O3 concentration, and a constant to correct for the difference in diffusivity between water vapor and 03. The simulation model TREGRO was also used to calculate the cumulative 03 uptake at all three sites. 03 uptake estimated by the statistical model was higher than that simulated by TREGRO because gas exchange rates were proportionally higher. O3 exposure and uptake were significantly correlated (r2>0.92), because O3 exposure and gs were highly correlated in both statistical and simulation models.  相似文献   

4.
为了研究2008年北京奥运会前期污染物浓度变化特征,对北京气象塔3层高度上的大气污染物(NO2和O3)进行加强观测,分析其变化特征。观测结果表明,由于北京奥运会前期采取了严格的空气质量控制措施,NO2浓度相对车辆限行前下降了45.3%,且随着高度递增逐渐降低;O3浓度最大值和日均值有所降低,其最大值出现时间较10年前提前了12 h,且有4 h左右处于相对平稳状态。O3浓度峰值主要是受NO2的控制,O3浓度峰值出现时间提前反映出北京大气氧化效率不断提高。对于观测期间出现光化学污染事件,利用同期气象资料和大气污染监测数据分析,发现造成这次大气污染的主要原因是气象因子:地面多处于弱高压场控制中,大气层结稳定,风力较弱(小于2 m/s),并伴随着连续高温、强辐射和低湿。  相似文献   

5.
Branch-level gas exchange provided the basis for assessing ozone flux in order to derive the dose-response relationship between cumulative O3 uptake (COU) and carbon gain in the upper sun crown of adult Fagus sylvatica. Fluxes of ozone, CO2 and water vapour were monitored simultaneously by climatized branch cuvettes. The cuvettes allowed branch exposure to an ambient or twice-ambient O3 regime, while tree crowns were exposed to the same O3 regimes (twice-ambient generated by a free-air canopy O3 exposure system). COU levels higher than 20mmolm(-2) led to a pronounced decline in carbon gain under elevated O3. The limiting COU range is consistent with findings on neighbouring branches exposed to twice-ambient O3 through free-air fumigation. The cuvette approach allows to estimate O3 flux at peripheral crown positions, where boundary layers are low, yielding a meso-scale within-crown resolution of photosynthetic foliage sensitivity under whole-tree free-air O3 fumigation.  相似文献   

6.
The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 microm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.  相似文献   

7.
There is an ongoing debate as to which components of the ambient ozone (O3) exposure dynamics best explain adverse crop yield responses. A key issue is regarding the importance of peak versus mid-range hourly ambient O3 concentrations. While in this paper the importance of peak atmospheric O3 concentrations is not discounted, if they occur at a time when plants are conducive for uptake, the corresponding importance of more frequently occurring mid-range O3 concentrations is described. The probability of co-occurrence of high O3 concentrations and O3 uptake limiting factors is provided using coherent data sets of O3 concentration, air temperature, air humidity, mean horizontal wind velocity and global radiation measured at representative US and German air quality monitoring sites. Using the PLant-ATmosphere INteraction (PLATIN) model, the significance of the aforementioned meteorological parameters on ozone uptake is examined. In addition, the limitations of describing the O3 exposure for plants under ambient, chamberless conditions by SUM06, AOT40 or W126 exposure indices are discussed.  相似文献   

8.
Liao YC  Chien SW  Wang MC  Shen Y  Hung PL  Das B 《Chemosphere》2006,65(2):343-351
The effect of transpiration (high and low) on Pb uptake by leaf lettuce and on water soluble low molecular weight organic acids (LMWOAs) in rhizosphere has been studied. After two weeks of growth the plants were cultured in greenhouse for more four weeks and two days. Pb(NO(3))(2) solutions of different concentrations (100, 200, and 300 mg l(-1) of Pb) were then added to the quartz sand pots of different plants and studies were initiated. Blank experiments (without treating the quartz sand pots with Pb(NO(3))(2) solutions) were also run in parallel. No significant differences in the growth of the plants with the concentrations of added Pb(NO(3))(2) solutions were observed by both low and high transpirations at the end of the 0, 3rd, and 10th days of studies. The total evaporation of the volatiles during 10 days did not depend on the concentration of Pb(2+) but with high transpiration the rate of evaporation was significantly higher than with low transpiration. Uptake of Pb by shoots and roots of the plants was found to be proportional to the concentration of various Pb(NO(3))(2) solutions added and more accumulation was observed in roots than in shoots at the end of 3rd and 10th days. High transpiration created more Pb uptake than low transpiration did. One volatile acid, propionic acid and nine non-volatile acids, lactic, glycolic, oxalic, succinic, fumaric, oxalacetic, D-tartaric, trans-aconitic, and citric acids in rhizosphere quartz sands were identified and quantified by gas chromatography (GC) analysis. D-Tartaric and citric acids were major among the non-volatile acids. The amount of LMWOAs in rhizosphere quartz sands increased with the higher amount of Pb uptake and also with the duration of studies. The total quantities of the LMWOAs in the rhizosphere quartz sands were significantly higher under high transpiration with 300 mg l(-1) Pb solution addition at the end of 10th day. The present study shows prominent correlation between transpiration and uptake of heavy metal and interesting correlation between Pb contaminated level and quantity of water soluble LMWOAs in rhizosphere quartz sands. The latter thus deserves of further studies.  相似文献   

9.
Tropospheric ozone (O3) levels are predicted to stay high, being a factor within "global change" with potential effects on the carbon sink strength of forest trees. Hence, new approaches to O3 risk assessment and their validation are required, although appropriate databases for adult trees are scant. Approaches based on external O3 exposure are presently being evaluated against the ones on O3 flux into leaves, as the cumulative uptake has the capacity for deriving O3 risk from cause-effect relationships. The effective dose, however, needs to account for the trees' O3 defence and tolerance in addition to O3 uptake. The current status of promoting the preferable mechanistic O3 flux concept is highlighted for major regions of Europe, addressing refinements and simplifications needed for routine use. At the pan-European scale, however, the flux-based concept is ready for use in O3 risk assessment and has the potential of meso-scale application at the forest ecosystem level.  相似文献   

10.
Chamber experiments on juvenile trees have resulted in severe injury and accelerated loss of leaves along with reduced biomass production under chronically enhanced O3 levels. In contrast, the few studies conducted on adult forest trees in the field have reported low O3 sensitivity. In the present study, young beech in phytotrons was more sensitive to O3 than adult beech in the field, although employed O3 regimes were similar. The hypotheses tested were that: (1) differences in O3 uptake were caused by the ontogenetically higher stomatal conductance of young compared to adult trees, (2) the experimental settings in the phytotrons enhanced O3 uptake compared to field conditions, and (3) a low detoxification capacity contributes to the higher O3 sensitivity of the young trees. The higher O3 sensitivity of juvenile beech in the phytotrons is demonstrated to relate to both the experimental conditions and the physiological responsiveness inherent to tree age.  相似文献   

11.
溶液中阴离子和腐殖酸对UV/H2O2降解2,4-二氯酚的影响   总被引:2,自引:0,他引:2  
研究了UV/H2O2工艺对2,4-二氯酚(2,4-DCP)的去除效果和水中阴离子、腐殖酸对该工艺降解2,4-DCP的影响.结果表明:UV/H2O2工艺可以有效地去除水中2,4-DCP,光降解过程符合一级反应动力学模型;在H2O2投加量为8 mg/L、1个30 W低压汞灯照射下,2,4-DCP在蒸馏水和自来水中反应速率常数分别为0.023 2、0.016 2 min-1;NO-3、Cl-、HCO-3对2,4-DCP光降解有抑制作用,当3种阴离子摩尔浓度为0.5、10.0、20.0 mmol/L时,对2,4-DCP光降解的抑制程度为HCO-3>NO-3>Cl-;腐殖酸在低浓度时,促进光降解反应进行,在高浓度时,2,4-DCP的光降解受到抑制.自来水中的反应速率常数低于蒸馏水中的反应速率常数是由于水中多种阴离子和腐殖酸影响的结果.  相似文献   

12.
Saitanis CJ 《Chemosphere》2003,51(9):913-923
Natural background ozone levels were monitored in three places within the greater rural area of Corinth, namely Bogdani Hill, Astronomical Observatory of Krionerion, and Kiato, and compared with ambient ozone monitored in the metropolitan area of Athens. Measurements were made sequentially, for a few weeks at each place, during the summer of 2000. In addition, ozone phytodetection, using tobacco (Nicotiana tabacum L.) plants of the Bel-W3 and Zichnomirodata varieties, was conducted in 12 places (the above included). Moreover, stomatal conductance was measured in the Bel-W3 plants, as well as in leaves of cultivated grape-vines (Vitis vinifera L.) and in needles of Aleppo pine (Pinus halepensis Mill.) trees and compared with the diurnal pattern of ozone concentrations.The 24 and 12 (08:00-20:00) hourly averages of ozone concentrations were high in Athens (37; 51 ppb), at Bogdani Hill (53; 56 ppb) and at the Astronomical Observatory (56; 55 ppb), but relatively low in Kiato (30; 34 ppb). Furthermore, the average daily AOT40 (accumulated exposure over 40 ppb for the daylight hours) (ppbh) was 193 in Athens, 212 at Bogdani Hill, 192 at the Astronomical Observatory and 47 in Kiato. Ozone concentrations exhibited the usual diurnal pattern in Athens (altitude 50 m), where they were maximum during midday and early afternoon hours, as well as at Bogdani Hill (300 m) and in Kiato (5 m) where, however, they were maximal 1-3 h later. At the Astronomical Observatory (altitude 920 m) ozone remained constant during both daylight and night hours. The differences in diurnal patterns are consistent with those in places of different elevation, reported elsewhere.The Bel-W3 plants were injured at all 12 places; Zichnomirodata plants exhibited lower injury and only in some of the places; probable ozone symptoms were also observed on vine plants and pine trees. The greatest injury was observed at the high altitude places of Astronomical Observatory and Mougostos. Stomatal conductance, in all three species, peaked during morning and early midday hours when ozone levels were higher in the high altitude, and lower in the low altitude, places.  相似文献   

13.
Weekly-fortnightly ozone (O3) concentrations measured by passive sampling at 81 forest monitoring plots in France, Italy, Spain and Switzerland over the period 2000-2002 were used to estimate the cumulative exposure index AOT40. The estimation method is based on a deterministic model which describes the O3 daily profile as a function of relative altitude (the difference between the altitude of the site and the lowest altitude within a 5 km radius) and the time of the day. Estimated AOT40 values (AOT40(e)) were evaluated against co-located automatic measurement stations and with 14 independent automatic stations located throughout Italy whose weekly mean O3 values were used to simulate passive samplers. AOT40 can be predicted by modelling passive sampling data (R2: 0.90; P<0.0001, SE of estimates: 3271 ppb h), although considerable deviations can occur for individual sites. Estimated AOT40 shows a distinct, significant latitudinal and altitudinal gradient. Taking the 3-year average as a whole, exceedance of critical level of 5000 ppb h occurs at 77-100% of the monitored sites, respectively.  相似文献   

14.
Sewage sludge and yard waste compost were used as biofilter materials and tested with respect to their capacity for removing ammonia from air at different water contents. Ammonia removal was measured in biofilters containing compost wetted to different moisture contents ranging from air dry to field capacity (maximum water holding capacity). Filters were operated for 15 days and subsequently analyzed for NH3/NH4+, NO2-, and NO3-. The measured nitrogen species concentration profiles inside the filters were used to calculate ammonia removal rates. The results showed that ammonia removal is strongly dependent on the water content in the filter material. At gravimetric water contents below 0.25 g H2O g solids(-1) for the yard waste compost and 0.5 g H2O g solids(-1) ammonia removal rates were very low but increased rapidly above these values. The sewage sludge compost filters yielded more than twice the ammonia removal rate observed for yard waste compost likely because of a high initial concentration of nitrifying bacteria originating from the wastewater treatment process and a high airwater interphase surface area that facilitates effective ammonia dissolution and transport to the biofilm.  相似文献   

15.
This study is aimed at investigating the impact of water quality on the uptake and distribution of three non-essential and toxic elements, namely, As, Cd and Pb in the watercress plant to assess for metal toxicity. The plant was hydroponically cultivated under greenhouse conditions, with the growth medium being spiked with varying concentrations of As, Cd and Pb. Plants that were harvested weekly for elemental analysis showed physiological and morphological symptoms of toxicity on exposure to high concentrations of Cd and Pb. Plants exposed to high concentrations of As did not survive and the threshold for As uptake in watercress was established at 5 ppm. Translocation factors were low in all cases as the toxic elements accumulated more in the roots of the plant than the edible leaves. The impact of Zn on the uptake of toxic elements was also evaluated and Zn was found to have an antagonistic effect on uptake of both Cd and Pb with no notable effect on uptake of As. The findings indicate that phytotoxicity or death of the watercress plant would prevent it from being a route of human exposure to high concentrations of As, Cd and Pb in the environment.  相似文献   

16.
Five-month old hybrid poplar clones NE388 and NE359 were exposed to square-wave 30, 55, and 80 ppb O(3) (8 h/day, 7 day/week) under constant high light (HL) and light fleck (LF) during 28 May-29 June 1999, and exposed to 30 and 55 ppb O(3) under HL, LF, and constant low light (LL) during 22 May-28 June 2000 within Continuously Stirred Tank Reactors (CSTR) in a greenhouse. Ramets of these two hybrid clones received similar total photosynthetically active radiation (PAR) within the LF and LL treatments. Visible foliar symptoms, leaf gas exchange, and growth were measured. More severe O(3) induced foliar symptoms were observed on ramets within the LF and LL treatments than within the HL treatment for both clones. The LF treatment resulted in significantly greater foliar injury than the LL treatment for NE388. The LF and LL treatments generally resulted in lower photosynthetic rates (Pn) for both clones, but did not affect stomatal conductance (g(wv)); therefore, the ratios of g(wv)/Pn and the O(3) uptake/Pn were greatest in plants grown under the LF treatment, followed by those grown under LL treatment; plants grown under HL had the lowest ratios of g(wv)/Pn and O(3) uptake/Pn. Greater ratios of g(wv)/Pn and O(3) uptake/Pn were consistently associated with more severe visible foliar symptoms. The negative impacts of the LF treatment on growth were greater than those of the LL treatment. Results indicate that not only the integral, but also the pattern of photo flux density, may affect carbon gain in plants. Increased foliar injury may be expected under light fleck conditions due to the limited repair capacity as a result of continuity of O(3) uptake while photosynthesis decreases under LL conditions.  相似文献   

17.
To clarify the response of growth and root functions to low concentrations of ozone (O(3)), rice plants (Oryza sativa L.) were exposed to O(3) at 0.0 (control), 0.05 and 0.10 ppm for 8 weeks from vegetative to early heading stages. Exposure to 0.05 ppm O(3) tended to slightly stimulate the dry weight of whole plants up to 5 weeks and then slightly decrease the dry weight of whole plants. However, these effects were statistically significant only at 6 weeks. Exposure to 0.10 ppm O(3) reduced the dry weight of whole plants by 50% at 5 and 6 weeks, and thereafter the reduction of the dry weight of whole plants was gradually alleviated. Those changes in dry weight can be accounted for by a decrease or increase in the relative growth rate (RGR). The changes in the RGR caused by 0.05 and 0.10 ppm O(3) could be mainly attributed to the effect of O(3) on the net assimilation rate. Root/shoot ratio was lowered by both 0.05 and 0.10 ppm O(3) throughout the exposure period. The root/shoot ratio which had severely decreased at 0.10 ppm O(3) in the first half period of exposure (1-4 weeks) became close to the control in the latter part of exposure (5-8 weeks). Time-course changes in NH(4)-N root uptake rate were similar to those in the root/shoot ratio especially for 0.10 ppm O(3). On the other hand, root respiration increased from the middle to later periods. Since it is to be supposed that plants grown under stressed conditions change the ratio of plant organ weight to achieve balance between the proportion of shoots to roots in the plant and their activity for maintaining plant growth, these changes in root/shoot ratio and nitrogen uptake rate under long-term exposure can be considered to be an adaptive response to maintain rice growth under O(3) stress.  相似文献   

18.
Atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazinedyl-2,4-diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continuously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

19.
The BIODEP model in terms of atmosphere-lake interactions was developed. The model was applied to an oligotrophic, dimictic high altitude lake (Lake Redo, Pyrenees) for a range of polychlorinated biphenyl (PCB) congeners. High altitude lakes, which receive their contaminant inputs uniquely from the atmosphere through long-range atmospheric transport, provide ideal controlled environments for the study of the interactions between atmospheric depositional and water column biogeochemical processes. The BIODEP model was able to predict dissolved water concentrations and PCB accumulation in the lake sediment within a factor of 2. This shows that the BIODEP model captures the essential processes driving the sink of POPs in high altitude lakes and that POP occurrence in the lake is driven by direct atmospheric inputs with limited influence from the watershed. An important seasonal variability in water column concentrations is predicted which should have important implications in sampling strategies. Furthermore, it is shown that diffusive air-water exchange dominated the PCB dynamics in the lake, especially for the less chlorinated biphenyls.  相似文献   

20.
Oats (Avena sativa L. cv Titus) were exposed to low concentrations of O3 in an assimilation chamber system. Net photosynthesis (net CO2 uptake), measured before and after O3 fumigation, showed significantly different responses for leaves of different age. The oldest active leaf was the most sensitive to O3. Net photosynthesis was depressed after 2 h with 0.075 ppm (150 microg m(-3)) O3. For leaves exposed to 0.150 ppm (300 microg m(-3)) O3 for 2 h, net photosynthesis was reduced significantly for 4 h, after which recovery occurred, nearly reaching the preexposure level 19 h after the exposure. Dark respiration was initially more than doubled after exposure to 0.130 ppm (260 microg m(-3)) O3. There was no visible injury after any of the experiments. The results indicate that O3 may cause crop losses through effects on photosynthesis even in Scandinavia, where a typical O3 episode lasts 1 to 2 h, and the concentration seldom exceeds 0.150 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号