首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database.  相似文献   

2.
Abstract

An ozone (O3) exposure assessment study was conducted in Toronto, Ontario, Canada during the winter and summer of 1992. A new passive O3 sampler developed by Harvard was used to measure indoor, outdoor, and personal O3 concentrations. Measurements were taken weekly and daily during the winter and summer, respectively. Indoor samples were collected at a total of 50 homes and workplaces of study participants. Outdoor O3 concentrations were measured both at home sites using the passive sampler and at 20 ambient monitoring sites with continuous monitors. Personal O3 measurements were collected from 123 participants, who also completed detailed time-activity diaries. A total of 2,274 O3 samples were collected. In addition, weekly air exchange rates of homes were measured.

This study demonstrates the performance of our O3 sampler for exposure assessment. The data obtained are further used to examine the relationships between personal, indoor (home and workplace), and outdoor O3 concentrations, and to investigate outdoor and indoor spatial variations in O3 concentrations. Based on home outdoor and indoor, workplace, and ambient O3 concentrations measured at the Ontario Ministry of the Environment (MOE) sites, the traditional microenvironmental model predicts 72% of the variability in measured personal exposures. An alternative personal O3 exposure model based on outdoor measurements and time-activity information is able to predict the mean personal exposures in a large population, with the highest R2 value of 0.41.  相似文献   

3.
As a part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study, 48 h integrated residential indoor, outdoor, and personal exposure concentrations of 10 carbonyls were simultaneously measured in 234 homes selected from three US cities using the Passive Aldehydes and Ketones Samplers (PAKS). In this paper, we examine the feasibility of using residential indoor concentrations to predict personal exposures to carbonyls. Based on paired t-tests, the means of indoor concentrations were not different from those of personal exposure concentrations for eight out of the 10 measured carbonyls, indicating indoor carbonyls concentrations, in general, well predicted the central tendency of personal exposure concentrations. In a linear regression model, indoor concentrations explained 47%, 55%, and 65% of personal exposure variance for formaldehyde, acetaldehyde, and hexaldehyde, respectively. The predictability of indoor concentrations on cross-individual variability in personal exposure for the other carbonyls was poorer, explaining<20% of variance for acetone, acrolein, crotonaldehyde, and glyoxal. A factor analysis, coupled with multiple linear regression analyses, was also performed to examine the impact of human activities on personal exposure concentrations. It was found that activities related to driving a vehicle and performing yard work had significant impacts on personal exposures to a few carbonyls.  相似文献   

4.
5.
ABSTRACT

We conducted a multi-pollutant exposure study in Baltimore, MD, in which 15 non-smoking older adult subjects (>64 years old) wore a multi-pollutant sampler for 12 days during the summer of 1998 and the winter of 1999. The sampler measured simultaneous 24-hr integrated personal exposures to PM25, PM10, SO4 2-, O3, NO2, SO2, and exhaust-related VOCs.

Results of this study showed that longitudinal associations between ambient PM2.5 concentrations and corresponding personal exposures tended to be high in the summer (median Spearman's r = 0.74) and low in the winter (median Spearman's r = 0.25). Indoor ventilation was an important determinant of personal PM2.5 exposures and resulting personal-ambient associations. Associations between personal PM25 exposures and corresponding ambient concentrations were strongest for well-ventilated indoor environments and decreased with ventilation. This decrease was attributed to the increasing influence of indoor PM2 5 sources. Evidence for this was provided by SO4 2-measurements, which can be thought of as a tracer for ambient PM25. For SO4 2-, personal-ambient associations were strong even in poorly ventilated indoor environments, suggesting that personal exposures to PM2.5 of ambient origin are strongly associated with corresponding ambient concentrations. The results also indicated that the contribution of indoor PM2.5 sources to personal PM2.5 exposures was lowest when individuals spent the majority of their time in well-ventilated indoor environments.

Results also indicate that the potential for confounding by PM2.5 co-pollutants is limited, despite significant correlations among ambient pollutant concentrations. In contrast to ambient concentrations, PM2.5 exposures were not significantly correlated with personal exposures to PM2.5-10, PM2.5 of non-ambient origin, O3, NO2, and SO2. Since a confounder must be associated with the exposure of interest, these results provide evidence that the effects observed in the PM2.5 epidemiologic studies are unlikely to be due to confounding by the PM2.5 co-pollutants measured in this study.  相似文献   

6.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

7.
The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study at 219 non-smoking homes (once or twice) in Los Angeles County, CA, Elizabeth, NJ, and Houston, TX. Fourier transform infrared (FTIR) spectra of PM2.5 samples were collected, and FG absorbances were quantified by partial least squares (PLS) regression, a multivariate calibration method.There is growing evidence in the literature that a large majority of indoor-generated PM2.5 is organic. The current research suggests that indoor-generated PM2.5 is enriched in aliphatic carbon–hydrogen (CH) FGs relative to ambient outdoor PM2.5. Indoor-generated CH exceeded outdoor-generated CH in 144 of the 167 homes for which indoor or outdoor CH was measurable; estimated indoor emission rates are provided. The strong presence of aliphatic CH FGs in indoor PM2.5 makes particulate organic matter substantially less polar indoors and in personal exposures than outdoors. This is a substantial new finding. Based on the quantified FGs, the average organic molecular weight (OM) per carbon weight (OC), a measure of the degree of oxygenation of organic PM, is in the range of 1.7–2.6 for outdoor samples and 1.3–1.7 for indoor and personal samples. Polarity or degree of oxygenation effects particle deposition in exposure environments and in the respiratory system.  相似文献   

8.
ABSTRACT

To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM25 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated.

Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rS (S) =r o v ' Spearman (Sp) 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland.

We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.  相似文献   

9.
Elevated concentrations of nitrogen dioxide (NO2) are produced in the home by the use of unvented gas appliances. In studies on potential health effects of Indoor exposure to NO2, exposure has mostly been estimated from the presence or absence of sources like gas cookers in the home. This leads to misclassification of exposure, as NO2 concentrations in the home depend also on source use, ventilation habits, time budgets, etc. The availability of cheap, passive monitoring devices has made it possible to measure Indoor concentrations of NO2 directly in health effects studies, albeit with averaging times of one to several days. So far, it has not been evaluated whether this increases the sensitivity of a study to detect health effects of NO2. In this paper, a comparison is made between NO2 sources and weekly average indoor NO2 measurements, as predictors of pulmonary function in a study among children aged 6–12 years.

The relationship between exposure and lung functions was found to be generally non-significant in this study. The results further suggested that in this study, measuring Indoor NO2 concentrations with passive monitors offered no advantage over the simple use of source presence as exposure variable.  相似文献   

10.
Sources and concentrations of indoor air pollutants and aeroallergens were evaluated in the arid Southwest community of Tucson, Arizona. One major purpose was to appraise the interaction of indoor and outdoor human exposures. A rough time budget study showed that 74% of adults spent 75% or more of their time in some indoor environment. Outdoor and indoor concentrations of TSP, RSP, CO, O3 and aeroallergens were measured for 41 detached dwellings. Small area and basin monitoring occurred for TSP, CO, NO2, O3 and aeroallergens; ambient TSP frequently exceeds NAAQS and both CO and O3 do occasionally. Indoor TSP and RSP were lower than outdoors and were of a different composition. Outdoor infiltration falls rapidly for particles and pollen, related to distance Indoors. CO was low and O3 was very low indoors. TSP and RSP correlated significantly with tobacco smoking and CO correlated with gas stove usage. Temperature varied minimally indoors and relative humidity indoors was similar to outdoor readings In this climate. It was concluded that better particle characterization and better estimates of total exposure are required.  相似文献   

11.
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children’s Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan.Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10–15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO2 concentrations were typically higher than indoor NO2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS.These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each home by weighting 2- and 7-day integrated concentrations using continuous measurements from regulatory monitoring sites. This approach may be applied to estimate short-term daily or hourly pollutant concentrations in future health studies.  相似文献   

12.
Extensive data on residential indoor and outdoor NO2 levels have been collected in a limited number of U.S. locations. To date, researchers have analyzed these data sets individually, but have not analyzed them in the aggregate. Results have not, therefore, been suitable for application in a nationwide exposure assessment. This paper presents an analysis of indoor and outdoor NO2 field measurements from five U.S. metropolitan areas for homes with gas-fueled ranges and discusses potential applications of the results. Using linear regression analysis, the relationship between indoor NO2 and various predictor variables was explored. Results indicated that ambient NO2 levels alone explain an estimated 37 percent of the variability in indoor NO2 levels, that the relationship between indoor and outdoor NO2 concentrations differs significantly from summer to winter months, and that homes with range pilot lights have indoor levels approximately 7 ppb greater than homes without pilot lights. A logistic regression model which predicts the distribution of indoor NO2 levels based on ambient NO2 concentrations was developed. Estimation and testing of the logistic model indicated good model performance. The model is particularly useful for addressing policy-oriented questions that involve the concept of "acceptable" threshold levels for human exposure to NO2.  相似文献   

13.
Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25–55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM2.5 and NO2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM2.5 and NO2. A high correlation was observed between the personal 48-h PM2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM2.5 and the personal work time PM2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM2.5) and 19% (NO2) of the variation in perceived air pollution annoyance in traffic. Compared to Helsinki, in Basel and Prague the adult participants were more annoyed by air pollution while in traffic even after taking the current home outdoor PM2.5 and NO2 levels into account.  相似文献   

14.
Several studies have investigated the health of children attending schools located near busy roads. In this study, we have measured personal exposure to traffic-related pollutants in children to validate exposure classification based on school location. Personal exposure to PM2.5, soot, NOx and NO2 was measured during four 48-h periods. The study involved 54 children attending four different schools, two of which were located within 100 m of a major road (one ring road and one freeway) and the other two were located at a background location in the city of Utrecht, The Netherlands. Outdoor monitoring was conducted at all school sites, during the personal measurements. A questionnaire was administered on time activity patterns and indoor sources at home. The outdoor concentration of soot was 74% higher at the freeway school compared to its matched background school. Personal exposure to soot was 30% higher. For NOx the outdoor concentration was 52% higher at the freeway school compared to its background school. The personal concentration of NOx was 37% higher for children attending the freeway school. Differences were smaller and insignificant for PM2.5 and NO2. No elevated personal exposure to air pollutants was found for the children attending the school near the ring road. We conclude that the school's proximity to a freeway can be used as a valid estimate of exposure in epidemiological studies on the effects of the traffic-related air pollutants soot and NOx in children.  相似文献   

15.
Abstract

Sources and concentrations of indoor nitrogen dioxide (NO2) were examined in Barcelona, Spain, during 1996– 1999. A total of 340 dwellings of infants participating in a hospital-based cohort study were selected from different areas of the city. Passive filter badges were used for indoor NO2 measurement over 7–30 days. Dwelling inhabitants completed a questionnaire on housing characteristics and smoking habits. Data on outdoor NO2 concentrations were available for the entire period of the study in the areas of the city where indoor concentrations were determined. Bivariate analysis was performed to investigate relationships between indoor NO2 concentrations on one hand and outdoor NO2 concentrations, housing, and occupant characteristics on the other. Stepwise multiple linear regression was performed with variables that were 1996 and 27.02 ppb in 1999, with the highest yearly value of 27.82 ppb in 1997. In the same time period, mean outdoor NO2 concentration ranged between 25.26 and 25.78 ppb with a peak of 30.5 ppb in 1998. Multiple regression analysis showed that principal sources of indoor NO2 concentrations were the use of a gas cooker, the absence of an extractor fan when cooking, and cigarette smoking. The absence of central heating was also associated with higher NO2 concentrations. Finally, each ppb increase in outdoor NO2 was associated with a 1% increase in indoor concentrations.  相似文献   

16.
ABSTRACT

We measured particulate matter (PM2.5 and PM10) exposures, home temperature, arterial blood oxygen saturation, blood pressure, and lung function in 30 volunteer Los Angeles area residents during four-day intervals. Continuous Holter electrocardiograms were recorded in a subgroup on the first two days. Subjects recorded symptoms and time-activity patterns in diaries during monitoring, and during a reference period one week earlier/later. All subjects had severe chronic obstructive pulmonary disease. PM10 (24-hr mean) at monitoring stations near subjects’ homes averaged 33 μg/m3, and ranged from 9 to 84 μpg/m3. In longitudinal analyses, day-to-day changes in PM2.5 and PM10 outside subjects’ homes significantly tracked concurrent station PM10 (r2 = 0.22 and 0.44, respectively). Indoor and personal concentrations were less related to station readings (r2 ≤ 0.1), but tracked each other (r2 ≥ 0.4). In-home temperatures tracked outdoor temperatures more for lows (r2 = 0.27) than for highs (r2 = 0.10). These longitudinal relationships of subject-oriented and station PM measurements were generally similar to cross-sectional relationships observed previously in similar subjects. Among health measurements, only blood pressure showed reasonably consistent unfavorable longitudinal associations with particulates, more with station or outdoor PM than with indoor or personal PM.  相似文献   

17.
Abstract

To examine factors influencing long‐term ozone (O3) exposures by children living in urban communities, the authors analyzed longitudinal data on personal, indoor, and outdoor O3 concentrations, as well as related housing and other questionnaire information collected in the one‐year‐long Harvard Southern California Chronic Ozone Exposure Study. Of 224 children contained in the original data set, 160 children were found to have longitudinal measurements of O3 concentrations in at least six months of 12 months of the study period. Data for these children were randomly split into two equal sets: one for model development and the other for model validation. Mixed models with various variance‐covariance structures were developed to evaluate statistically important predictors for chronic personal ozone exposures. Model predictions were then validated against the field measurements using an empirical best‐linear unbiased prediction technique.The results of model fitting showed that the most important predictors for personal ozone exposure include indoor O3 concentration, central ambient O3 concentration, outdoor O3 concentration, season, gender, outdoor time, house fan usage, and the presence of a gas range in the house. Hierarchical models of personal O3 concentrations indicate the following levels of explanatory power for each of the predictive models: indoor and outdoor O3 concentrations plus questionnaire variables, central and indoor O3 concentrations plus questionnaire variables, indoor O3 concentrations plus questionnaire variables, central O3 concentrations plus questionnaire variables, and questionnaire data alone on time activity and housing characteristics. These results provide important information on key predictors of chronic human exposures to ambient O3 for children and offer insights into how to reliably and cost‐effectively predict personal O3 exposures in the future. Furthermore, the techniques and findings derived from this study also have strong implications for selecting the most reliable and cost‐effective exposure study design and modeling approaches for other ambient pollutants, such as fine particulate matter and selected urban air toxics.  相似文献   

18.
A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5–21 ppb for homes with no source, and 21–27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.  相似文献   

19.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in the indoor environments of 15 urban homes and their adjacent outdoor environments in Alexandria, Egypt, during the spring time. Indoor and outdoor carbon dioxide (CO2) levels were also measured concurrently. The results showed that indoor and outdoor PM2.5 concentrations in the 15 sites, with daily averages of 45.5 ± 11.1 and 47.3 ± 12.9 µg/m3, respectively, were significantly higher than the ambient 24-hr PM2.5 standard of 35 µg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The indoor PM2.5 and CO2 levels were correlated with the corresponding outdoor levels, demonstrating that outdoor convection and infiltration could lead to direct transportation indoors. Ventilation rates were also measured in the selected residences and ranged from 1.6 to 4.5 hr?1 with median value of 3.3 hr?1. The indoor/outdoor (I/O) ratios of the monitored homes varied from 0.73 to 1.65 with average value of 0.99 ± 0.26 for PM2.5, whereas those for CO2 ranged from 1.13 to 1.66 with average value of 1.41 ± 0.15. Indoor sources and personal activities, including smoking and cooking, were found to significantly influence indoor levels.

Implications: Few studies on indoor air quality were carried out in Egypt, and the scarce data resulted from such studies do not allow accurate assessment of the current situation to take necessary preventive actions. The current research investigates indoor levels of PM2.5 and CO2 in a number of homes located in the city of Alexandria as well as the potential contribution from both indoor and outdoor sources. The study draws attention of policymakers to the importance of the establishment of national indoor air quality standards to protect human health and control air pollution in different indoor environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号