首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was ±0.6 μg/m3 organic material, ±0.3 μg/m3 ammonium sulfate, and ±0.07 μg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

2.
ABSTRACT

A multi-system, high-volume, parallel plate diffusion dénuder Brigham Young University Organic Sampling System (BIG BOSS) was tested using collocated samplers at the Pico Rivera Monitoring Station of the South Coast Air Quality Management District, South Coast Air Basin, in September 1994. Six-hr daytime and 9-hr nighttime samples were collected with a flow of about 200 L/min through each of the three systems designed to collect particles smaller than 2.5, 0.8, and 0.4 mm in a diffusion denuder sampler. Efficiency for the removal of gas phase organic compounds by the diffusion denuder was evaluated using both theoretical predictions and field measurements. Both measured and calculated data indicate high denuder efficiency for the removal of gas phase aromatic and paraffinic compounds. The precision of the BIG BOSS was evaluated using collocated samplers. The precision of determination of total carbon and elemental carbon retained by a quartz filter or of semi-volatile carbonaceous material lost from particles during sampling averaged ±7%. The precision of determination of individual organic compounds averaged ±10%. An average of 42 and 62% of the particulate organic material was semi-volatile organic compounds (SVOCs) lost from particles during sampling for daytime and nighttime samples, respectively. This “negative” sampling artifact was an order of magnitude larger than the “positive” quartz filter artifact due to adsorption of gas phase organic material. Daytime concentrations of fine particulate elemental carbon and nonvolatile organic carbon were higher than nighttime concentrations, but nighttime fine particles contained more semi-volatile organic material than daytime.  相似文献   

3.
ABSTRACT

Ambient particles contain substantial quantities of material that can be lost from the particles during sample collection on a filter. These include ammonium nitrate and semi-volatile organic compounds. As a result, the concentrations of these species are often significantly in error for results obtained with a filter pack sampler. The accurate measurement of these semi-volatile fine particulate species is essential for a complete understanding of the possible causes of health effects associated with exposure to fine particles. Past organic compound diffusion denuder samplers developed by the authors (e.g., the Brigham Young University Organic Sampling System [BOSS]) are not amenable to routine field use because of the need to independently determine the gas-phase semi-volatile organic material efficiency of the denuder for each sample. This problem has been eliminated using a combined virtual impactor, particle-concentrator inlet to provide a concentrated stream of 0.1-2.5-μm particles. This is followed by a BOSS diffusion denuder and filter packs to collect particles, including any semi-volatile species lost from the particles during sampling. The samp ler (Particle Concentrator-Brigham Young University Organic Sampling System [PC-BOSS]) contains a post-denuder multifilter pack unit to allow for the routine collection of several sequential samples. The PC-BOSS can be used for the determination of both fine particulate nitrate and semi-volatile organic material without significant “positive” or “negative” sampling artifacts. Validation of the sampler for the determination of PM2.5 sulfate and nitrate based on comparison of results obtained at Riverside, CA with collocated PC-BOSS, annular denuder, and Chem Spec samplers indicates the PC-BOSS gives accurate results for these species with a precision of ±5-8%. An average of 33% of the PM2.5 nitrate was lost from the particles during sampling for both denuder and single filter samplers.  相似文献   

4.
Abstract

An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3?rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 μg/m3 hydrochloric acid (standard deviation [SD] ± 0.2 μg/m3); 1.14 μg/m3 nitric acid (SD ± 0.81 μg/m3), and 1.61 μg/m3 sulfuric acid (SD ± 1.58 μg/m3). The citric acid denuders yielded an average concentration of 17.89 μg/m3 NH3 (SD ± 15.03 μg/m3). The filters yielded average fine aerosol concentrations of 1.64 μg/m3 ammonium (NH4 +;SD ± 1.26 μg/m3); 0.26 μg/m3 chloride (SD ± 0.69 μg/m3), 1.92 μg/m3 nitrate (SD ± 1.09 μg/m3), and 3.18 μg/m3 sulfate (SO4 2?; SD ± 3.12 μg/m3). From seasonal variation, the measured particulates (NH4 +,SO4 2?, and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4 2? based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4 + concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.  相似文献   

5.
ABSTRACT

Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatiliza-tion of NH4NO3 is generally negligible for both samplers.4 3Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found3to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within ±15%. A possible cause of the difference in HNO3 con-3centrations is due to a greater loss of HNO3 in the cyclone3 used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon3filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by3the nylon filters need further investigation.  相似文献   

6.
An intensive field study was conducted in Research Triangle Park, North Carolina in the fall of 1986. Ambient concentrations of the following constituents were obtained: nitric acid, nitrous acid, nitrogen dioxide, sulfur dioxide, ammonia, hydrogen ion, and particulate nitrate, sulfate, and ammonium. Results collected using the annular denuder system (ADS) and the transition flow reactor (TFR) are presented and compared.

Both types of samplers had operational detection limits on daily (22-hour) samples that were generally below 1 μg m-3 suggesting that both samplers can provide sensitive measurements for most of the constituents of interest. Both the ADS and TFR show reasonable (>25 percent) within-sampler precision for most of the measured species concentrations, except TFR fine particulate nitrate measurements where results were frequently negative (The TFR fine particulate nitrate measurement is calculated using subtraction of positive numbers).

Comparison of ADS and TFR daily results showed good agreement for total particulate sulfate, the sum of total (coarse plus fine) particulate and gaseous nitrate, and ammonia. As a result of different inlet particle collection efficiencies, the ADS fine particulate sulfate exceeded the TFR (5 percent). In the absence of a filter to collect volatilized particulate ammonium in the ADS, the sum of total particulate and gaseous ammonium in the TFR exceeded that in the ADS. Of potentially more importance, ADS measurements of SO2 and H+ exceeded those of the TFR, while TFR measurements of HNO3 exceeded those of the ADS. Results of this study suggest that the TFR may provide biased measurements of SO2, H+, HNO3, and Fine NO3 - that cannot be corrected without modifications to the fundamental design of the sampling system.  相似文献   

7.
The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

8.
Abstract

Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.  相似文献   

9.
A collocated, dry deposition sampling program was begun in January 1987 by the US Environmental Protection Agency to provide ongoing estimates of the overall precision of dry deposition and supporting data entering the Clean Air Status and Trends Network (CASTNet) archive. Duplicate sets of dry deposition sampling instruments were installed adjacent to existing instruments and have been operated for various periods at 11 collocated field sites. All sampling and operations were performed using standard CASTNet procedures. The current study documents the bias-corrected precision of CASTNet data based on collocated measurements made at paired sampling sites representative of sites across the network. These precision estimates include the variability for all operations from sampling to data storage in the archive. Precision estimates are provided for hourly, instrumental ozone (O3) concentration and meteorological measurements, hourly model estimates of deposition velocity (Vd) from collocated measurements of model inputs, hourly O3 deposition estimates, weekly filter pack determinations of selected atmospheric chemical species, and weekly estimates of Vd and deposition for each monitored filter pack chemical species and O3.Estimates of variability of weekly pollutant concentrations, expressed as coefficients of variation, depend on chemical species: NO3∼8.1%; HNO3∼6.4%; SO2∼4.3%; NH4+∼3.7%; SO42−∼2.3%; and O3∼1.3%. Precision of estimates of weekly Vd from collocated measurements of model inputs also depends on the chemical species: aerosols ∼2.8%; HNO3∼2.6%; SO2∼3.0%; and O3∼2.0%. Corresponding precision of weekly deposition estimates are: NO3∼8.6%; HNO3∼5.2%; SO2∼5.6%; NH4+∼3.9%; SO42−∼3.5%; and O3∼3.3%. Precision of weekly concentration, Vd estimates, and deposition estimates are comparable in magnitude and slightly smaller than the corresponding hourly values. Annual precision estimates, although uncertain due to their small sample size in the current study, are consistent with the corresponding weekly values.  相似文献   

10.
ABSTRACT

From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the “clean” Wedding sampler consistently measured the same concentration as the “dirty” Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 um under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources.  相似文献   

11.
The Canadian Acid Aerosol Measurement Program (CAAMP) was established in 1992 to gain a better understanding of the atmospheric behaviour of fine particle strong acidity (“acid aerosols”) and to facilitate an assessment of the potential health risks associated with acid aerosols and particles in general. During 1992. 1993 and 1994, annular denuder and filter measurements were taken at four sites in Ontario, two in Quebec, three in the Atlantic Provinces and one in the greater Vancouver area. Mean fine particle sulphate concentrations (SO42−) were highest in southern Ontario (annual average ranged from 40–70 nmol m−3), lowest at a site in the Vancouver area (average = 16 nmol m−3) and second lowest in rural Nova Scotia. However, mean fine particle strong acid concentrations (H+) were geographically different. The highest mean concentrations were at the east coast sites (annual average of up to 30 nmol m−3). Acidities were lower in areas where the fine particle acidity experienced greater neutralization from reaction with ammonia. This included the major urban centres (i.e. Toronto and Montréal) and areas with greater amounts of agricultural activity, as in rural southern Ontario. On average, ambient concentrations of fine and coarse particle mass were larger in the urban areas and also in areas where SO42− levels were higher. All the particle components were episodic. However, compared to SO42− and fine particles (PM2.5 or PM2.1, depending upon inlet design), episodes of H+ tended to be less frequent and of shorter duration, particularly in Ontario. Saint John, New Brunswick, had the highest mean annual H+ concentration, which was 30 nmol m−3. H+ episodes (24 h concentration > 100 nmol m−3) were also the most frequent at this location. The high levels in Saint John were partially due to local sulphur dioxide sources and heterogeneous chemistry occurring in fog, which, on average, led to a 50% enhancement in sulphate, relative to upwind conditions.There was a substantial amount of intersite correlation in the day to day variations in H+, SO42− , PM2.5 and PM10 (fine + coarse particles) concentrations, which is due to the influence of synoptic-scale meteorology and the relatively long atmospheric lifetime of fine particles. Sulphate was the most regionally homogenous species. Pearson correlation coefficients comparing SO42− between sites ranged from 0.6 to 0.9, depending on site separation and lag time. In many cases, particle episodes were observed to move across the entire eastern portion of Canada with about a two-day lag between the SO42− levels in southern Ontario and in southern Nova Scotia.  相似文献   

12.
A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks (CASTNet and Acid-MODES) and using duplicate annular denuder systems (ADS). Precision estimates for most of the measured species are similar for weekly ADS and composited FPs. There is generally good agreement between the weekly CASTNet FP results aggregated from weekly daytime and weekly nighttime samples and those aggregated from daily 24 h Acid-MODES samples; although SO2 is the exception, and CASTNet concentrations are higher than Acid-MODES. Comparison of weekly ADS results with composited weekly FP results from CASTNet shows good agreement for SO2-4. With the exception of the two weeks where the FP exceeded the ADS, both HNO3 and the sum of particulate and gaseous NO-3 show good agreement. The FP often provides good estimates of HNO3, but when used to sample atmospheres that have experienced substantial photochemical reactivity, FP HNO3 determinations using nylon filters may be biased high. It is suggested that HNO2 or some other oxidized nitrogen compound can accumulate on a regional scale and may interfere with the FP determination of HNO3. FP particulate NO-3 results are in fair agreement with the ADS. Since FP SO2 results are biased low by 12–20%, SO2 concentration in the CASTNet data archive should be adjusted upward. Nylon presents problems as a sampling medium in terms of SO2 recovery and specificity for HNO3. Additional comparative sampler evaluation studies are recommended at several sites over each season to permit comprehensive assessment of the concentrations of atmospheric trace constituents archived by CASTNet.  相似文献   

13.
A Micro-Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI were employed to determine the size-segregated mass distributions of ambient particulate matter (PM) and water-soluble ionic species for particulate constituents. In addition, gas precursors, including HCl, HONO, HNO3, SO2, and NH3 gases, were analyzed by an annular denuder system. PM size mass distribution, mass concentration, and ionic species concentration were measured during the day and at night during episode and non-episode periods in winter and summer. Average total suspended particle (TSP) concentrations during episode days in winter were as high as 153?±?33 μg/m3, and PM mass concentrations in summer were as low as one-third of that in winter. Generally, PM concentration at night was higher than that in the daytime in southern Taiwan during the sampling periods. In winter during the episode periods, the size-segregated mass distribution of PM mass concentration was mostly in the 0.32–3.2-μm range, and the PM concentration increased significantly in the range of 0.32–3.2 μm at night. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34–48 % of TSP mass. High concentrations of ammonia (12.9–49 μg/m3) and SO2 (2.6–27 μg/m3) were observed in the gas precursors. The conversion ratio was high in the PM size range of 0.18–3.2 μm both during the day and at night in winter, and the conversion ratio of episode days was 20 % higher than that of non-episode days. The conversion factor was high for both nitrogen and sulfur species at nighttime, especially on episode days.  相似文献   

14.
Abstract

The U.S. Environmental Protection Agency Clean Air Status and Trends Network (CASTNET) utilizes an open-face filter pack system to measure concentrations of atmospheric sulfur and nitrogen species. Concentration data for nitrogen species measured with filter pack systems sometimes deviate from data collected by other measurement systems used to measure the same species. The nature of these differences suggests that more than one sampling mechanism or atmospheric process is involved. The study presented here examines these differences by intercomparing CASTNET data with data from other studies, examining the results from earlier intercomparison studies, and conducting a field test to investigate the effect of particle size on filter pack measurement systems. Measurements of nitrogen species from the Maryland Aerosol Research and Characterization (MARCH) monitoring site were compared with nitrogen concentrations at three nearby CASTNET sites. Results indicate that CASTNET measured higher particulate nitrate (NO3 -) and lower gaseous nitric acid (HNO3) concentrations. Comparisons of NO3 - from 34 collocated CASTNET and Inter-agency Monitoring of Protected Visual Environments (IMPROVE) sites show that CASTNET NO3 - measurements were typically higher than the corresponding IM PROVE values. Also, results from the Lake Michigan Air Director’s Consortium Midwest Ammonia Monitoring Project demonstrated NO3 - dissociation on Teflon filters. To investigate the effect of particle size, filter pack measurement systems were operated at three CASTNET sites with and without cyclones during six 7-day measurement periods from March to August 2006. Results indicate the size-selection cyclones had a significant effect on both NO3 - and HNO3 concentrations, but little effect on sulfate (SO4 2-) and ammonium (NH4 +) levels. NO3 - concentrations sampled with the open-face filters were significantly higher than concentrations measured with a 2.5-μm cut point, as were HNO3 concentrations. Although limited in spatial and temporal coverage, the field study showed that the use of an open-face filter pack may allow for the collection of coarse NO3 - particles and for the reaction of HNO3 with metals/salts on the Teflon filter.  相似文献   

15.
Laboratory and field experiments were performed to evaluate integrative measurement methods for atmospheric nitrates, sulphate and sulphur dioxide. Denuder tubes and several filter media were tested under laboratory and field conditions. Effects of sampling variables such as temperature and relative humidity, flow rates, concentration, loading capacity and artifacts due to NO, NO2 and SO2 were also evaluated. The integrative filter sampling method and the ion chromatographic analytical procedure gave a measurement precision (relative standard deviation) of ±11.5 percent for particulate NO3 ? on Teflon and ±15.6 percent for gaseous HNO3 on nylon; for both these constituents, the detection limit was about 0.1 μ m?3.  相似文献   

16.
Bursa is one of the largest cities of Turkey and it hosts 17 organized industrial zones. Parallel to the increase in population, rapidly growing energy consumption, and increased numbers of transport vehicles have impacts on the air quality of the city. In this study, regularly calibrated automatic samplers were employed to get the levels of air pollution in Bursa. The concentrations of CH4 and N-CH4 as well as the major air pollutants including PM10, PM2.5, NO, NO2, NOx, SO2, CO, and O3, were determined for 2016 and 2017 calendar years. Their levels were 1641.62?±?718.25, 33.11?±?5.45, 42.10?±?10.09, 26.41?±?9.01, 19.47?±?16.51, 46.73?±?16.56, 66.23?±?32.265, 7.60?±?3.43, 659.397?±?192.73, and 51.92?±?25.63 µg/m3 for 2016, respectively. Except for O3, seasonal concentrations were higher in winter and autumn for both years. O3, CO, and SO2 had never exceeded the limit values specified in the regulations yet PM10, PM2.5, and NO2 had violated the limits in some days. The ratios of CO/NOx, SO2/NOx, and PM2.5/PM10 were examined to characterize the emission sources. Generally, domestic and industrial emissions were dominated in the fall and winter seasons, yet traffic emissions were effective in spring and summer seasons. As a result of the correlation process between Ox and NOx, it was concluded that the most important source of Ox concentrations in winter was NOx and O3 was in summer.  相似文献   

17.
Abstract

The real-time ambient mass sampler (RAMS) is a continuous monitor based on particle concentrator, denuder, drier, and tapered element oscillating microbalance (TEOM) monitor technology. It is designed to measure PM2.5 mass, including the semi-volatile species NH4NO3 and semi-volatile organic material, but not to measure PM2.5 water content. The performance of the RAMS in an urban environment with high humidity was evaluated during the July 1999 NARSTO-Northeast Oxidant and Particles Study (NEOPS) intensive study at the Baxter water treatment plant in Philadelphia, PA. The results obtained with the RAMS were compared to mass measurements made with a TEOM monitor and to constructed mass obtained with a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) sampler designed to determine the chemical composition of fine particles, including the semi-volatile species. An average of 28% of the fine particulate material present during the study was semi-volatile organic material lost from a filter during particle collection, and 1% was NH4NO3 that was also lost from the particles during sampling. The remaining mass was dominantly nonvolatile (NH4)2SO4 (31%) and organic material (37%), with minor amounts of soot, crustal material, and nonvolatile NH4NO3. Comparison of the RAMS and PC-BOSS results indicated that the RAMS correctly monitored for fine particulate mass, including the semi-volatile material. In contrast, the heated filter of the TEOM monitor did not measure the semi-volatile material. The comparison of the RAMS and PC-BOSS data had a precision of ±4.1 μg/m3 (±9.6%). The precision of the RAMS data was limited by the uncertainty in the blank correction for the reversible adsorption of water by the charcoal-impregnated cellulose sorbent filter of the RAMS monitor. The precision of the measurement of fine par-ticulate components by the PC-BOSS was ±6-8%.  相似文献   

18.
ABSTRACT

Five identical, collocated, low-volume samplers were operated to collect airborne particulate matter less than 2.5 microns (PM25). Five commercially available filter types were installed in the samplers to compare the gravimetric determination of PM2.5 concentrations in the atmosphere. The filters were rotated through the five samplers for two study periods—one in summer and one in winter. The study was performed in Sheridan, WY, in close proximity to a gravimetric laboratory to minimize the introduction of errors associated with sample handling. Rigorous quality assurance procedures were employed throughout the study.Four of the five filter types provided comparable gravimetric determinations of airborne PM2.5.  相似文献   

19.
A field evaluation between two annular denuder configurations was conducted during the spring of 2003 in the marine Arctic at Ny-Ålesund, Svalbard. The IIA annular denuder system (ADS) employed a series of five single-channel annular denuders, a cyclone and a filter pack to discriminate between gas and aerosol species, while the EPA-Versatile Air Pollution Sampler (VAPS) configuration used a single multi-channel annular denuder to protect the integrity of PM2.5 sample filters by collecting acidic gases. We compared the concentrations of gaseous nitric acid (HNO3), nitrous acid (HONO), sulfur dioxide (SO2) and hydrochloric acid (HCl) measured by the two systems. Results for HNO3 and SO2 suggested losses of gas phase species within the EPA-VAPS inlet surfaces due to low temperatures, high relative humidities, and coarse particle sea-salt deposition to the VAPS inlet during sampling. The difference in HNO3 concentrations (55%) between the two data sets might also be due to the reaction between HNO3 and NaCl on inlet surfaces within the EPA-VAPS system. Furthermore, we detected the release of HCl from marine aerosol particles in the EPA-VAPS inlet during sampling contributing to higher observed concentrations. Based on this work we present recommendations on the application of denuder sampling techniques for low-concentration gaseous species in Arctic and remote marine locations to minimize sampling biases. We suggest an annular denuder technique without a large surface area inlet device in order to minimize retention and/or production of gaseous atmospheric pollutants during sampling.  相似文献   

20.
Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatilization of NH4NO3 is generally negligible for both samplers. Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within +/- 15%. A possible cause of the difference in HNO3 concentrations is due to a greater loss of HNO3 in the cyclone used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by the nylon filters need further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号