首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.  相似文献   

2.
The Bitterfeld/Wolfen region is a megasite with multiple contaminant sources from more than a century of industrial activity, which have a considerable impact on the environment. At present, the contaminated groundwater covers an area of about 25km(2) and poses a threat for the surrounding aquifers and the Mulde River. This study focuses on the Schachtgraben, a man-made channel in the Mulde Floodplain that collects the effluents of the industrial area. It aims to characterise the relationship between surface water (channels, rivers) and the groundwater in the shallow Quaternary aquifer. Waters are Ca-SO(4) type with TDS reaching 3.8gL(-1) in the industrial area. Stable isotopes (delta(18)O, delta(2)H) show that two of the rivers are recharged mainly by groundwater that can be divided into two groups. Strontium isotopes ((87)Sr/(86)Sr) designate different geochemical end-members and enable the identification of mixing between natural and anthropogenic surface and groundwater.  相似文献   

3.
Savage C 《Ambio》2005,34(2):145-150
This paper reviews the use of stable nitrogen isotopes (delta15N) to delineate the influence of sewage nitrogen (N) in coastal ecosystems, drawing extensively on the case of Himmerfj?rden, a Baltic Sea bay that receives 15N-enriched tertiary treated sewage that is discharged mainly as dissolved inorganic N (DIN). Gradients of delta15N in macroalgae (Fucus vesiculosus) and surface sediments traced sewage-derived N to 24 km from the outfall but elevated delta15N values (> 7 per thousand) indicated that the sewage influence was most pronounced within 10 km. Comparison of macroalgal delta15N values before and after enhanced tertiary treatment showed a decrease in the spatial impact of sewage N from about 24 km to 12 km from the outfall and a decrease to more marine delta15N values in more recent growth tissues. Sedimentary delta15N records showed that sewage has had a dominant influence on organic matter production in the bay with dramatic increases in sedimentary delta15N during the years of maximum sewage N loads. In cases where sewage N introduces a distinct isotopic signature into a system and where it has had a dominant influence on organic matter production, delta15N values in biota and sediments can be used to trace the spatial and temporal influence of sewage N in aquatic ecosystems.  相似文献   

4.
A study was conducted to evaluate long-term trends in nitrate concentrations and to try to identify the origin of nitrate using stable isotopes (15N(NO3-) and 18O(NO3-)) in the aquifers of the western Central Valley, Costa Rica, where more than 1 million people depend on groundwater to satisfy their daily needs. Data from 20 sites periodically sampled for 4 to 17 years indicate an increasing trend in nitrate concentrations at five sites, which in a period ranging from 10 to 40 years, will exceed recommended maximum concentrations. Results of isotopic analysis indicate a correspondence between land use patterns and the isotopic signature of nitrate in groundwater and suggest that urbanization processes without adequate waste disposal systems, followed by coffee fertilization practices, are threatening water quality in the region. We conclude that groundwater management in this area is not sustainable, and that land use substitution processes from agricultural activity to residential occupation that do not have proper sewage disposal systems may cause a significant increment in the nitrate contaminant load.  相似文献   

5.
Impacts of swine manure pits on groundwater quality   总被引:5,自引:0,他引:5  
Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and delta15N and delta15O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites. Fecal streptococcus was more common and at greater concentrations than fecal coliform. The microbiological data suggest that filtration of bacteria by soils may not be as effective as commonly assumed. The presence of fecal bacteria in the shallow groundwater may pose a significant threat to human health if the ground water is used for drinking. Both facilities are less than 4 years old and the short-term impacts of these manure storage facilities on groundwater quality have been limited. Continued monitoring of these facilities will determine if they have a long-term impact on groundwater resources.  相似文献   

6.
Wang ZL  Zhang J  Liu CQ 《Chemosphere》2007,69(7):1081-1088
The concentrations of Sr and (87)Sr/(86)Sr isotopic ratios have been measured in the dissolved loads from the main channel of the Yangtze River. The result shows that the Yangtze River mainstream water has considerably higher Sr concentration (202-330 microg kg(-1)) and slightly lower (87)Sr/(86)Sr ratio (0.7098-0.7108) than the global average runoff values of dissolved Sr (78 microg kg(-1)) and (87)Sr/(86)Sr ratio (0.7119). The (87)Sr/(86)Sr values of 0.7098-0.7108 in river waters result from the intense weathering of carbonate and evaporate rocks that enriched in the Yangtze River drainage basin. The calculated result based on the end-member mixing model shows that about 91% of total dissolved Sr are derived from the weathering of carbonate and evaporate rocks and the other 9% derived from the weathering of silicate rock. The Yangtze River transports about 1.86 x1 0(11)g yr(-1) (2.12 x 10(9)mol yr(-1)) of dissolved Sr annually to the East China Sea, with an average (87)Sr/(86)Sr of 0.7108. The calculated "(87)Sr(excess) flux" of the Yangtze River is about 2.12 x 10(7)mol yr(-1), indicating the important impact on seawater Sr isotope evolution. The measured (87)Sr/(86)Sr ratios of suspended particulate matters in the Yangtze River water ranging from 0.7178 to 0.7252, are about 0.015 higher than that of corresponding dissolved loads, reflecting more important contribution of silicate particles in suspended particulate matters and preferential dissolution of carbonate rocks during basin weathering.  相似文献   

7.

The Beiyun river flows through a hot spot region of Beijing-Tianjin-Hebei in China that serves a majority of occupants. However, the region experiences severe nitrate pollution, posing a threat to human health due to inadequate self-purification capacity. In that context, there is an urgent need to assess nitrate levels in this region. Herein, we used δ15N-NO3, δ18O-NO3 isotopes analysis, and stable isotope analysis model to evaluate the nitrate source apportionment in the Beiyun river. A meta-analysis was then used to compare the potential similarity of nitrate sources among the Beiyun riverine watershed and other watersheds. Results of nitrate source apportionment revealed that nitrate originated from the manure and sewage (contribution rate: 89.6%), soil nitrogen (5.9%), and nitrogen fertilizer (3.9%) in the wet season. While in the dry season, nitrate mainly originated from manure and sewage (91.6%). Furthermore, different land-use types exhibited distinct nitrate compositions. Nitrate in urban and suburban areas mostly was traced from manure and sewage (90.5% and 78.8%, respectively). Notably, the different nitrate contribution in the rural-urban fringe and plant-covered areas were manure and sewage (44.3% and 32.8%), soil nitrogen (26.9% and 35.7%), nitrogen fertilizer (23.5% and 29.4%), and atmospheric deposition (5.3% and 2.0%). Through a meta-analysis, we found nitrogen fertilizer, soil nitrogen, and manure and sewage as the main nitrate sources in the Beiyun riverine watershed or the other similar complexed watersheds in the temperate regions. Thus, this study provides a scientific basis for nitrate source apportionment and nitrate pollution preventive management in watersheds with complexed land-use types in temperate regions.

  相似文献   

8.
We investigated chemical and Sr isotopic composition of monthly rainwater collected on Peng-Chia-Yu (PCY) in northern Taiwan. Rainwater 87Sr/86Sr ratios, Na/Cl, Ca/Cl, Sr/Cl, Sr/Ca, NH4/Cl, NO3/Cl, SO4/Cl and Na/Sr, showed clear seasonal cycles, reflecting mixture of loess carbonates (high Ca/Sr and more radiogenic 87Sr/86Sr) and seawater (low Ca/Sr and intermediate 87Sr/86Sr). Model results showed that the former source contributes up to 45% during the winter monsoon period, but seawater is the dominant Sr source in rainwater (>50%) at other times. Two anomalously low 87Sr/86Sr values occurred in July and August 1998, coinciding with the Merapi eruption in Indonesia. Air-mass backward trajectories and the geochemical and isotopic compositions in rainwater and Merapi lava (i.e. Ca/Sr = 100 and 87Sr/86Sr = 0.705400) suggested that the Merapi eruption delivered ash across the western equatorial Pacific to PCY. Aerosols leaching experiments were conducted to examine the impact of the 1998 eruption, demonstrating that only a minor terrestrial signature can be extracted by distilled water, implying rapid dispatch of volcanic gases or high-efficiency dissolution of ash related substance in acidic rains.  相似文献   

9.
Our objectives were to determine (1) how much N is transferred into the food web via plants from a wetland receiving not only inputs of treated sewage effluent, but also containing contaminants such as polychlorinated biphenyls (PCBs), (2) how birds, as consumers, utilize exogenous N and uptake PCBs in relation to the food web of the wetlands, (3) the feasibility of using isotopic analysis in estimating trophic levels in a semi-arid system. Our results demonstrate that there is very high spatial variability in the N isotopic composition of primary producers. Birds had lower variability in delta15N, despite feeding at multiple trophic levels. In very high spatial variability in delta15N of primary producers, it is difficult to use N isotope techniques to define trophic levels relevant to the bioaccumulation of organic pollutants, but it is possible to track the flow of exogenous N through the food web.  相似文献   

10.
Atmospheric aerosols have been collected at four sites around Japan during 2000. From systematically monitoring the major (Na, Mg, Al, K, Ca, and Fe) and trace (Rb and Sr) elements, along with the Sr isotope composition, we have tried to estimate the contribution of long-range-transported Asian dust (“Kosa”) to the atmospheric aerosols.The results are summarized as follows:(1) The concentration of each element in the aerosols increased during the “Kosa” period. The increase was particularly obvious in samples collected on 8 April 2000, when the “Kosa Phenomenon” was observed at all the sampling sites in Japan, 2 days after a very heavy dust storm had occurred in China.(2) The Rb–Sr isotopic diagram shows a two-component mixing relationship: one with a high 87Sr/86Sr ratio and a high 87Rb/86Sr ratio, and the other with a low 87Sr/86Sr ratio and a low 87Rb/86Sr ratio. There is a significant difference between that of the expected end member of the Asian dust and that of the reported Asian loess, which is thought to be the possible source of the components of the “Kosa”, although the lower component is consistent with the local component at Wako.(3) Plots of the 87Sr/86Sr ratio vs the Ca/Al and Sr/Al ratios support a two-component mixing suggested by the Rb–Sr systematics, and they indicate that the contributing continental soil components to the “Kosa” aerosols should be composed of the silicate fraction of Asian loess.(4) The discrepancy in the Rb–Sr systematics between the expected end member and the possible sources may be caused by the dissolution of the Ca-bearing minerals via long-range dust transport, or by a combination of source characteristics and grain size separation.  相似文献   

11.
Subsurface soils near Clyde Forks, Ontario, Canada, can have naturally high concentrations of mercury (Hg) from local geological sources. To investigate Hg in local aquatic food webs, Hg was measured in fish dorsal muscle (mainly yellow perch [YP] and pumpkinseed sunfish [PS]) and surface sediments from 10 regional lakes. Water chemistry, along with fork length, weight, and stable isotopes (delta15N, delta13C, delta34S) in fish were also measured. No lake sediments had elevated (>0.3microg/g dw) Hg, and average Hg concentrations in fish were not sufficiently high (<1microg/g dw) to be of concern for fish-eating wildlife. Variance in fish Hg was best explained by dietary carbon source (delta13C), and certain lake variables (e.g., pH for YP). PS with more pelagic feeding habits had higher delta34S and Hg than those with more littoral feeding habits. Potential biological linkages between fish Hg and delta34S, a parameter that may be related to the lake sulphate-reducing bacteria activity, requires further investigation.  相似文献   

12.
Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment difficult. Our study is the first to examine the use of phytochelatin measurements in tree leaves for delimiting biological metal stress in shallow, metal-contaminated groundwater systems. Three tree species (Rhamnus frangula, Acer platanoides, and Betula populifolia) growing above the shallow groundwater aquifer of the Aberjona River watershed in Woburn, Massachusetts, display a pattern of phytochelatin production consistent with known sources of metal contamination and groundwater flow direction near the Industri-Plex Superfund site. Results also suggest the existence of a second area of contaminated groundwater and elevated metal stress near the Wells G&H Superfund site downstream, in agreement with a recent EPA ecological risk assessment. Possible contamination pathways at this site are discussed.  相似文献   

13.
Strontium isotope ratios and concentrations of Ca2+, NH4+, Na+, K+, Mg2+, Cl?, SO42?, NO3? and Al3+, Sr2+ were measured for 52 rainwater samples collected in virgin forest in a rural region between May 2007 and Dec. 2008. The rainwater pH values vary from 4.1 to 7.2 with a volume weight mean (VWM) value of 5.40. 40 of 52 samples have pH value above 5.0, indicating that the regional rainwater was not acidic. Among anions and cations, sulphate concentration (40.4 μeq l?1, VWM) is the highest in the rainwater, followed by ammonium and calcium (30.2 and 20.8 μeq l?1, VWM). Rainwater quality is characterized by low salinity and neutralized pH.The chemical compositions and 87Sr/86Sr ratios of the rainwater samples vary considerably. Using Na+ concentration as an indicator of marine origin, the proportions of sea salt and crustal elements were estimated from elemental ratios. The 87Sr/86Sr ratios were used to characterize different sources base on the data sets of this study and those from literatures. Such sources include weathering of limestone (87Sr/86Sr = 0.7075), remote soil dust (87Sr/86Sr > 0.7135) and anthropogenic source (fertilizers: 87Sr/86Sr = 0.7079). The results of the present study suggest that one likely source for high ammonium and calcium concentration is local soil. Due to a large contribution of these cations to the sulphate neutralization action, the rainwater in this region displays non-acidity, and thus has not significant environmental impact. The wet precipitation in the karst virgin forest in Guizhou province is strongly influenced by natural sources rather than anthropogenic sources.  相似文献   

14.

Identification of different pollution sources in groundwater is challenging, especially in areas with diverse land uses and receiving multiple inputs. In this study, principal component analysis (PCA) was combined with geographic information system (GIS) to explore the spatial and temporal variation of groundwater quality and to identify the sources of pollution and main factors governing the quality of groundwater in a multiple land-use area in southwestern China. Groundwater samples collected from 26 wells in 2012 and 38 wells in 2018 were analyzed for 13 water quality parameters. The PCA results showed that the hydro-geochemical process was the predominant factor determining groundwater quality, followed by agricultural activities, domestic sewage discharges, and industrial sewage discharges. Agriculture expansion from 2012 to 2018 resulted in increased apportionment of agricultural pollution. In contrast, economic restructure and infrastructure improvement reduced the contributions of domestic sewage and industrial pollution. Anthropogenic activities were found the major causes of elevated nitrogen concentrations (NO3?, NO2?, NH4+) in groundwater, highlighting the necessity of controlling N sources through effective fertilizer managements in agricultural areas and reducing sewage discharges in urban areas. The applications of GIS and PCA successfully identified the sources of pollutants and major factors driving the variations of groundwater quality in tested years.

  相似文献   

15.
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.  相似文献   

16.
The same emission factor is applied to fertiliser N and manure N when calculating national N2O inventories. Manures and fertilisers are often applied together to meet the N needs of the crop, but little is known about potential interactions leading to an increase in denitrification rate or a change in the composition of the end-products of denitrification. We used the 15N gas-flux method in a laboratory experiment to quantify the effect of liquid manure (LM) application on the fluxes of N2 and N2O when the soil contained fertiliser 15NO3-. LM increased the mole fraction of N2O from 0.5 to 0.85 in the first 12 h after application. More than 94% of the N2O was from the reduction of NO3-, probably due to aerobic nitrate respiration as well as respiratory denitrification.  相似文献   

17.
Zhou J  Wu Y  Zhang J  Kang Q  Liu Z 《Chemosphere》2006,65(2):310-317
Elemental (TOC, TN, C/N) and stable carbon and nitrogen isotopic (delta(13)C, delta(15)N) compositions were measured for surface sediments, three sediment vibrocores, plants, and suspended particulate matter (SPM) collected from salt marsh of the Changjiang Estuary. The purpose of this study is to characterize the sources of organic matter in sediments and to further elucidate the factors influencing the isotope signature in the salt marsh. Our results indicate that organic matter preserved in the sediments is predominantly controlled by the particulate organic matter in the Changjiang Estuary. The in situ contribution of marsh plants carbon to sediment organic matter is clearest in the high marsh, where the low delta(13)C of the plants (-28.1 per thousand) is reflected by a sediment delta(13)C (-24.7 per thousand) lower than values found for the low marsh and bare flat sediments (-23.4 per thousand and -23.0 per thousand, respectively). The effect of grain size on the spatial difference of isotope composition in the marsh sediments is insignificant, based on the observation that similar isotope values are found in different size particles, both for delta(13)C and delta(15)N. Nutrient utilization by plant assimilation, however, shows great impact on the surface sediment delta(15)N composition, due to the isotope fractionation. With extensive plant coverage and the consequent low surface water nitrate concentration, delta(15)N values of the high marsh surface sediments show (15)N enrichment.  相似文献   

18.
The 87Sr/86Sr ratios in monthly precipitation in the forested basin at Kawakami, central Japan, varied seasonally from 0.709 to 0.711 in spring to as low as 0.7062 ± 0.0004 in autumn over nine years from 1987 to 1995. The seasonal variation can be explained in terms of the mixing of three sources of Sr: sea salt (87Sr/86Sr 0.70917), soluble eolian minerals originating from deserts in continental Asia ( 0.711), and biogenic materials growing on soils derived from the volcanic rock substrates in the vicinity ( 0.706). It is estimated that the contribution of sea-salt Sr into the Kawakami rain Sr is relatively constant (10 ± 5%) and that more than half of the Sr is of biogenic origin throughout the year except during spring rains when 50% of the Sr is due to the dissolution of Ca-minerals from Asian dusts. The dominant contribution of eolian components to spring rains is consistent with the high concentration of 3H, which is typical of air masses from Asia.  相似文献   

19.
A number of proxies, including carbon to nitrogen ratio (C:N) and stable isotopes (delta(13)C and delta(15)N), have been used to reconstruct organic matter (OM) profiles from lake sediments and these proxies individually or in combination cannot clearly discriminate different sources. Here we present an alternative approach to elucidate this problem from lake sediments as a function of watershed scale land use changes. Stable isotope signatures of defined OM sources from the study watersheds, Shawnigan Lake (SHL) and Elk Lake (ELL), were compared with sedimentary proxy records. Results from this study reveal that terrestrial inputs and catchment soil coinciding with the watershed disturbances histories probably contributed in recent trophic enrichment in SHL. In contrast, cultural eutrophication in ELL was partially a result of input from catchment soil (agricultural activities) with significant input from lake primary production as well. Results were consistent in both IsoSource (IsoSource version 1.2 is a Visual Basic program used for source separation, (http://www.epa.gov/wed/pages/models/isosource/isosource.htm) and discriminant analysis (statistical classification technique).  相似文献   

20.
Stable carbon and hydrogen isotopes can be an efficient means to validate biodegradation of organic contaminants in groundwater since it results in an isotopic fractionation. A prerequisite in applying this method in the field is the proof that other processes decreasing the contaminant concentration are conservative with respect to isotope effects. In this paper we show for carbon isotopes of halogenated hydrocarbon compounds [trichloroethene (TCE), cis-dichloroethene (c-DCE), vinylchloride (VC)] and carbon and hydrogen isotopes of BTEX compounds (benzene, toluene, p-xylene) that no significant fractionation occurs during equilibrium sorption onto activated carbon, lignite coke and lignite. In general, effects were in the range of the reproducibility limit of the analytical instrument (0.5 per thousand for delta13C, and 8 per thousand for delta2H). This observation was made for fractions sorbed of less than 5% to more than 95%. Also for rate-limited sorption of TCE onto activated carbon, no significant fractionation in carbon isotopes could be observed. These findings support the assumption that for these classes of compounds, sorption processes in aquifer systems are conservative with respect to isotope effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号