首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Im J  Lee CM  Coates JT 《Chemosphere》2008,71(4):621-628
In studies assessing sorption of hydrophobic organic compounds (HOCs) in natural systems, the choice of an appropriate reference black carbon, which can represent environmental black carbon (BC), is essential. This study compared isotherms of two commonly available and distinct reference BCs (n-hexane soot (BCRM) and diesel particulate matter (SRM 2975)) and a natural sediment from a source with little black carbon (Lake Hartwell, SC) using 3,3',4-trichlorobiphenyl (IUPAC #35) as a model sorbate. There was greater sorptivity for PCB-35 by BCRM than by SRM 2975. The observed differences in sorption between the two reference black carbons for PCB-35 may be ascribed to the different chemical characteristics of the black carbons. Differences in pore volume distribution at <16A pore width are less likely to be responsible for the observed differences in sorption. The elemental analysis confirmed that BCRM was a pure n-hexane soot because only C, H and O were measured. In contrast, SRM 2975 also contained N and S and a higher O% than BCRM. Compared to the low BC sediment, the two reference BCs had greater pore volume distributions, surface areas, total pore volumes and sorption. The observed nF (i.e., Freundlich exponent) values for PCB indicated greater linearity of the isotherms for the natural sediment than for the reference black carbons. For designing studies of sorption of HOCs in natural systems, in particular, when PCBs are contaminants of concern, results of this study can aid selection of the appropriate reference BCs.  相似文献   

2.
Sorption isotherms (pg-ng/L) were measured for 11 polychlorinated biphenyls (PCBs) of varying molecular planarity from aqueous solution to two carbonaceous geosorbents, anthracite coal and traffic soot. All isotherms were reasonably log-log-linear, but smooth for traffic soot and staircase-shaped for coal, to which sorption was stronger and more nonlinear. The isotherms were modeled using seven sorption models, including Freundlich, (dual) Langmuir, and Polanyi-Dubinin-Manes (PDM). PDM provided the best combination of reliability and mechanistically-interpretable parameters. The PDM normalizing factor Z appeared to correlate negatively with sorbate molecular volume, dependent on the degree of molecular planarity. The modeling results supported the hypothesis that maximum adsorption capacities (Qmax) correlate positively with the sorbent’s specific surface area. Qmax did not decrease with increasing sorbate molecular size, and adsorption affinities clearly differed between the sorbents. Sorption was consistently stronger but not less linear for planar than for nonplanar PCBs, suggesting surface rather than pore sorption.  相似文献   

3.
Black carbon (BC), characterized by high microporosity and high specific surface area (SSA), has been demonstrated to have substantial contributions to the sorption of hydrophobic organic chemicals in soils and sediments. Other naturally occurring organic matters provide soft and penetrable sorption domains while may cling to BC and affect its original surface properties. In this work, we studied the sorption sites of a Yangtze River sediment sample with organic carbon (OC) content of 3.3 % and the preheated sediment (combusted at 375 °C) with reduced OC content (defined as BC) of 0.4 % by gas and pyrene sorption. The SSA and microporosity of the pristine and preheated sediments were characterized by N2 and CO2 adsorption. The results suggest that the adsorption of N2 was hindered by amorphous organic carbon (AOC) in the pristine sediment but CO2 was not. Instead, the uptake of CO2 was higher in the presence of AOC, likely due to the partition of CO2 molecules into the organic matter. The pyrene adsorptions to BC in pristine and preheated sediments show a similar adsorption capacity at high concentration, suggesting that AOC of ca. 2.9 % in the pristine sediment does not reduce the accessibility to the sorption sites on BC for pyrene.  相似文献   

4.
The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na+ and Ca2+ on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH = 7. Isotherms for the beta-blocker metoprolol were obtained by sediment–water batch tests over a wide concentration range (1–100 000 μg L?1). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n = 0.9), indicating slightly non-linear behavior. Results show that the influence of Ca2+ compared to Na+ is more pronounced. A logarithmic correlation between the Freundlich coefficient KFr and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.  相似文献   

5.
Sun K  Jin J  Gao B  Zhang Z  Wang Z  Pan Z  Xu D  Zhao Y 《Chemosphere》2012,88(5):577-583
The potential for negative effects caused by endocrine disrupting chemicals (EDCs) release into the environment is a prominent concern and numerous research projects have investigated possible environmental fate and toxicity. However, their sorption behavior by size fractions of soil and sediment has not been systematically represented. The sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) by different size fractions of soil and sediment were investigated. Sorption isotherms of EE2, BPA, and Phen by size fractions of soil (SL) and sediment (ST) were well fitted to the Freundlich model. The positive correlation between EE2, BPA and Phen sorption capacity (log Kd) of size fractions and their organic carbon (OC) content suggests that OC of size fractions in SL and ST should regulate sorption, while the surface area (SA) of size fractions may not account for sorption of EE2, BPA and Phen. Each size fraction of ST had higher sorption capacity (Kd or KOC) of EE2 and BPA than that of SL due to their difference in the polarity of organic matter (OM) between terrestrial and aquatic sources. Sorption capacity logKd for size fractions of SL and ST did not follow the order: clay > silt > sand due to the difference in OM abundance and composition between the size fractions. Large particle fractions of ST contributed about 80% to the overall sorption for any EE2, BPA, and Phen. This study was significant to evaluate size fractions of soil and sediment as well as their associated OM affecting EE2 and BPA sorption processes.  相似文献   

6.
This paper investigates the sorption characteristics and mechanisms of pyrene onto two types of natural sepiolite-brown (B-Sep) and white (W-Sep). The effects of relevant properties such as clay content, surface area, pore diameter and volume, divalent cations, and organic carbon content were investigated by single component batch adsorption systems. The results suggest that pyrene has high affinity for both sepiolite and its sorption behavior could be mainly affected by exchangeable strongly hydrated cations such as Ca2+ and H2O in the zeolite-like channels and by open channel defects (OCD) structures but no so much by the large number of Si-OH groups located on the sepiolite’s basal surfaces. Mesoporosity rather than surface area largely controls the sorption capacity and intensity of both sepiolites. This is shown by the increase in pore volume that exhibited the greatest increase in BET surface area. Particle size and morphological changes of both sepiolites following pyrene adsorption determined by FE-SEM showed that the sepiolite fibers are much longer than their widths, which are only several laths (several nanometers). This is a result of growth, mostly along the c-axis, at the expense of the diffusion of pyrene molecules through aqueous solution. As a consequence, a significant fibrous morphology is produced following the adsorption of pyrene by both sepiolites.  相似文献   

7.
To date, sorption of organic compounds to nanomaterials has mainly been studied for the nanomaterial in its pristine state. However, sorption may be different when nanomaterials are buried in sediments. Here, we studied sorption of Perfluorooctane sulfonate (PFOS) to sediment and to sediment with 4% multiwalled carbon nanotubes (MWCNTs), as a function of factors affecting PFOS sorption; aqueous concentration, pH and Ca2+ concentration. Sorption to MWCNT in the sediment–MWCNT mixtures was assessed by subtracting the contribution of PFOS sorption to sediment-only from PFOS sorption to the total sediment–MWCNT mixture. PFOS Log KD values ranged 0.52–1.62 L kg?1 for sediment and 1.91–2.90 L kg?1 for MWCNT present in the sediment. The latter values are relatively low, which is attributed to fouling of MWCNT by sediment organic matter. PFOS sorption was near-linear for sediment (Freundlich exponent of 0.92 ± 0.063) but non-linear for MWCNT (Freundlich exponent of 0.66 ± 0.03). Consequently, the impact of MWCNT on sorption in the mixture was larger at low PFOS aqueous concentration. Effects of pH and Ca2+ on PFOS sorption to MWCNT were statistically significant. We conclude that MWCNT fouling and PFOS concentration dependency are important factors affecting PFOS–MWCNT interactions in sediments.  相似文献   

8.
Sun Y  Takaoka M  Takeda N  Wang W  Zeng X  Zhu T 《Chemosphere》2012,88(7):895-902
An activated carbon (AC) containing a high concentration (374 mg g−1) of Fe was prepared by carbonization of an ion-exchange resin. To examine its chemical reactivity as a catalyst to decompose 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153), the decomposition parameters of temperature and time were varied under air or N2. Decomposition at 350 °C was achieved within 15 min under air and 30 min under N2, and the efficiency of PCB-153 decomposition was 99.7% and 98.0%, respectively. An analysis of inorganic chloride ions revealed that PCB-153 was mineralized effectively during the decomposition. The Brunauer-Emmett-Teller (BET) surface area and pore volume of the AC were measured to assess the adsorption capacity before and after the decomposition. The differences between decomposition under air and N2 reflected the differences in the BET surface and pore volume measurements. A decomposition pathway was postulated, and the reactive characteristics of chlorine atoms loaded on the benzene rings followed the order of para meta ortho, which agrees with the calculated results from a density functional theory study.  相似文献   

9.
Sorption and leaching of the organophosphate (OP) pesticides chlorpyrifos, profenofos, methyl parathion and malathion were investigated with four different types of biomass: coconut husk, rice husk, peat moss and peanut shell. Organic carbon contents of the biomass were in the range of 35.4–45.4%. Sorption studies were carried out by the batch (equilibrium) method at 4 different OP spike concentrations and at pH 3–7. Sorption isotherms conformed to a linear Freundlich equation and the Freundlich constant or sorption coefficient (KD) confirmed that biomass organic carbon content was the principal sorbent factor affecting OP sorption. For a given sorbent, correlation of the extent of sorption with sorbate chemical properties was examined. Column leaching experiments involving different masses of coconut husk and peanut shell pre-spiked with OPs at the level equivalent to actual spraying concentrations in some Thai tangerine orchards were conducted. These experiments included repeated spikings and leaching. A water flow rate of 20 mL min?1 was employed corresponding to the current average watering regime. Retardation and biodegradation with these sorbents were also examined.  相似文献   

10.
The process of destroying polychlorinated biphenyls (PCBs) generates exhaust gases that contain low quantities of PCBs, which cannot be disposed of easily. Activated carbon (AC) can be used to adsorb residual PCBs after disposal of high-level PCBs. We examined the chemical reactivity of AC-supported iron as a catalyst to decompose PCB-153, and varied three decomposition parameters (temperature, time and iron concentration) under an atmosphere of either air or N(2). We measured the Brunauer-Emmett-Teller (BET) surface area and pore volume of AC to assess the adsorption capacity of AC before and after decomposition. At low temperatures the adsorption process was more important than the decomposition process. The decomposition process was completed within 30 and 60 min under air and N(2), respectively. The efficiency of PCB-153 decomposition at 350 degrees C for 120 min was approximately 100.0% and 97.1% under air and N(2), respectively. Analysis of inorganic chloride ions revealed that PCB-153 was effectively destroyed during decomposition. The differences between decomposition under air and N(2) reflected differences in BET surface and pore volume.  相似文献   

11.
The study of the effect of the sorption of linear alkylbenzene sulfonates (LAS) on the bioavailability to marine benthic organisms is essential to refine the environmental risk assessment of these compounds. According to the equilibrium partitioning theory (EqP), the effect concentration in water-only exposure will be similar to the effect concentration in the sediment pore water. In this work, sorption and desorption experiments with two marine sediments were carried out using the compound C12-2-LAS. The effect of the sediment sorption on the toxicity of benthic organisms was studied in water-only and in sediment bioassays with the marine mud shrimp Corophium volutator. In addition, three common spiking methods were tested for its application in the toxicity tests, as well as the stability of the surfactant during the water-only and sediment-water test duration. LC50 values obtained from water-only exposure showed a good correspondence with the pore water concentrations calculated from the sorption and desorption isotherms in the spiked sediments.  相似文献   

12.
Modifications of black carbons and their influence on pyrene sorption   总被引:2,自引:0,他引:2  
Zhang W  Wang L  Sun H 《Chemosphere》2011,85(8):1306-1311
Sorption of pyrene on black carbons (BCs) obtained by heating sawdust at two temperatures (400 and 700 °C, denoted as 400BC and 700BC, respectively), as well as on modified BCs (via oxidation, oximation, and hydrolysis) was studied to investigate the role of BC structural characteristics in sorption of hydrophobic organic compounds. Pyrene was bound strongly by 700BC and 400BC, with organic carbon normalized distribution coefficients (Koc) of 105.04-105.86 and 104.65-105.16, respectively, at equilibrium pyrene concentrations of 10-100 μg L−1. Both chemical composition and pore distribution of the two BCs changed after modifications, which led to changes in their sorption characteristics for pyrene. After modifications, the linearity of pyrene sorption isotherm increased for 700BC but decreased for 400BC. For 700BC, both oxidation and oximation reduced pyrene sorption, with Koc decreasing by 69.1-73.7% and 18.7-33.9%, respectively, whereas hydrolysis did not exert a significant influence. For 400BC, oxidation and hydrolysis reduced Koc by 2.28-25.9% and 29.2-33.9%, respectively, while oximation increased Koc. In most cases, the change in sorption capacity could be explained by the changes in C content and type, polarity, surface area, and micropore volume of the BCs; however, the role of conformation (the accessibility to sorption sites) could not be ignored.  相似文献   

13.
Li J  Zhou B  Shao J  Yang Q  Liu Y  Cai W 《Chemosphere》2007,68(7):1298-1303
The effects of different heavy metals (Cd, Pb), cationic surfactants cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecylbenzenesulfonate (SDBS) and the chemistry of the solution (pH and ionic strength) on the sorption of bisphenol A (BPA) to sediment were studied. Results showed that the presence of Cd and Pb caused a significant increase on the sorption of BPA to sediment and the sorption isotherms were in good agreement with Freundlich equation. The effect of surfactants on the adsorption of BPA onto sediment was found to strongly depend on the type of the surfactants. The presence of CTAB promoted BPA sorption and the amount of BPA adsorbed onto sediment increased linearly with concentration of CTAB. In contrast, the presence of anionic surfactant (SDBS) caused a slight reduction on the sorption of BPA. It was also found that the sorption behavior of BPA was affected by solution pH and ionic strength. The larger amount of BPA was absorbed with higher ionic strength and lower pH. This study may provide important insights into the understanding of the transport and fate of BPA in the environment.  相似文献   

14.
Bioavailability of sediment-sorbed compounds may vary with increasing contact time. This may result in the dietary uptake route becoming more significant as conditions in the gut flora aid the extraction of contaminants, which have migrated into sites within the sediment particle. Such mechanisms may have important implications on risk assessments performed on substances released into the environment. A series of experiments were carried out using sediment spiked with 14C-labelled pyrene, a polycyclic aromatic hydrocarbon. The sediment was left at room temperature over a period of 220 days. Periodically (at 0, 1, 14, 28, 70, 220 days) the sediment was used to perform a bioaccumulation study using the freshwater oligochaete Lumbriculus variegatus. A novel methodology using feeding and (decapitated) non-feeding worms, allowed differentiation between uptake via ingestion and simple sorption. Results showed that there was a decline in bioavailability with time and that this was a 3 stage process. A rapid initial decline was observed over the first day when a 40% decrease was measured, an intermediate period were levels remained stable (day 14 to day 70) and an ultimate decrease in pyrene activity in worm tissue of 70% after 220 days. Over this period the chemical extractability of pyrene also decreased by 50%, as the chemical migrated deeper into unavailable sites within the sediment matrix. Normalising bioavailability to the chemically extractable fraction of pyrene within the sediment provided an overall decrease in bioavailability of 58%. The importance of the dietary route of uptake for pyrene varied during the sediment aging process, reflecting the changes in the physico-chemical interactions between the pyrene, sediment and pore water.  相似文献   

15.
Organic pollutants (e.g. polyaromatic hydrocarbons (PAH)) strongly sorb to carbonaceous sorbents such as black carbon and activated carbon (BC and AC, respectively). For a creosote-contaminated soil (Sigma15PAH 5500 mg kg(dry weight(dw))(-1)) and an urban soil with moderate PAH content (Sigma15PAH 38 mg kg(dw)(-1)), total organic carbon-water distribution coefficients (K(TOC)) were up to a factor of 100 above values for amorphous (humic) organic carbon obtained by a frequently used Linear-Free-Energy Relationship. This increase could be explained by inclusion of BC (urban soil) or oil (creosote-contaminated soil) into the sorption model. AC is a manufactured sorbent for organic pollutants with similar strong sorption properties as the combustion by-product BC. AC has the potential to be used for in situ remediation of contaminated soils and sediments. The addition of small amounts of powdered AC (2%) to the moderately contaminated urban soil reduced the freely dissolved aqueous concentration of native PAH in soil/water suspensions up to 99%. For granulated AC amended to the urban soil, the reduction in freely dissolved concentrations was not as strong (median 64%), especially for the heavier PAH. This is probably due to blockage of the pore system of granulated AC resulting in AC deactivation by soil components. For powdered and granulated AC amended to the heavily contaminated creosote soil, median reductions were 63% and 4%, respectively, probably due to saturation of AC sorption sites by the high PAH concentrations and/or blockage of sorption sites and pores by oil.  相似文献   

16.
This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (fOC) ranging from 0.0035 to 0.082 gOC g−1. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations.  相似文献   

17.
Wang L  Yang Z  Niu J 《Chemosphere》2011,82(6):895-900
In aqueous environment temperature is considered to play a significant role in the sorption process of polycyclic aromatic hydrocarbons (PAHs) and its influence on the sorption equilibrium is indicative of sorption energies and mechanisms. In this study, sorptions of five PAHs on three heterogeneous sorbents including one river sediment (YHR), one estuary sediment (YRD) and one treated sediment with organic matter removed (IM) were carried out at a range of temperature from 5 °C to 35 °C. Stronger sorptions were observed at lower temperatures, with the equilibrium sorption coefficient Kd increasing 2-5 times as the temperature decreases 30 °C. The increase of Kd value was attributed primarily to the change of PAH water solubility, which predicted 40-75% of the increase of Kd in the sorption process. To provide insight into the sorption mechanism, enthalpy change (ΔHS) for the sorption process was calculated and the values were observed to be negative for all of the interactions, suggesting that the exothermal sorption of PAHs inversely dependents on temperature. Based on the values of ΔHS, van der Waals forces were inferred as the main sorption mechanism for the PAHs, especially on the YHR sediment which contained more organic matter. For sorption of larger size PAHs on the sorbents with low organic matter, specific interactions were deduced to contribute to the overall sorption.  相似文献   

18.
Xiao B  Huang W 《Chemosphere》2011,83(7):1005-1013
The goal of this study was to investigate the effects of both concentration levels and loading sequence or contamination history of each pollutant on the equilibrium sorption of mixed organic pollutants on soils. We measured binary sorption equilibria for a soil using ten concentration levels for both phenanthrene and naphthalene. Both solutes were either simultaneously loaded or sequentially loaded (i.e., the second sorbate was loaded after the sorption of the first sorbate had attained equilibrium) on soil. The results showed different competitive sorption equilibria between phenanthrene and naphthalene. In the presence of phenanthrene and regardless of loading sequence, naphthalene exhibited consistently lower sorption capacities and the ideal adsorbed solution theory (IAST) slightly underestimates the naphthalene sorption equilibria. Conversely, the sorption equilibria of phenanthrene in the presence of naphthalene depended upon the loading sequence of the two sorbates on the soil. Little competition from naphthalene on the sorption equilibria of phenanthrene was observed when phenanthrene was loaded either simultaneously with or sequentially after naphthalene, but appreciable competition from naphthalene was observed when the soil had been pre-contaminated with phenanthrene. IAST slightly underestimates the phenanthrene sorption equilibria observed in the latter system, but it cannot estimate the phenanthrene sorption equilibria in the former two systems. We proposed that adsorption on internal surfaces of ink-bottle shaped pores within relatively flexible sorbent matrix may have caused the competitive sorption phenomena observed in this study. The study suggests that contamination history may have strong influence on the equilibrium sorption of organic pollutant mixtures.  相似文献   

19.
沉积物与水间相互作用的研究进展   总被引:1,自引:0,他引:1  
本文综述了沉积物/水之间的相互作用的研究进展,主要讨论了污染物在沉积物/水界面间的物质传输:水体中污染物在颗粒物上的吸附作用;与沉积物相关的水质、健康和管理等方面的问题  相似文献   

20.
The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl2 were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants Kf of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl2 respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl2, respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号