首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
To verify a theoretical mass balance and multiple compartment partitioning model developed to predict freely dissolved concentrations (FDCs) of hydrophobic organic chemicals (HOCs) using negligible depletion-solid phase microextraction (nd-SPME), a series of sediment slurry experiments were performed using disposable poly(dimethyl)siloxane (PDMS) coated-SPME fibers and (14)C-radiolabeled HOC analogs. First, pre-calibration of disposable PDMS coated fibers for four model compounds (phenanthrene, PCB 52, PCB 153 and p,p'-DDE) with good precision (PCB 52>PCB 153, and the measured and predicted C(pw) values were not substantially different from empirically determined values except for p,p'-DDE.  相似文献   

2.
Yang ZY  Zhao YY  Tao FM  Ran Y  Mai BX  Zeng EY 《Chemosphere》2007,69(10):1518-1524
Bioconcentration factor (BCF) is often assumed to be linearly associated with the octanol-water partition coefficient K(ow) for hydrophobic organic chemicals (HOCs). However, a large amount of data has suggested that the correlation between the logBCF and logK(ow) is curvilinear for HOCs. Similar curvilinear relationship has also been noticed for sorption of HOCs into poly(dimethyl)siloxane (PDMS), a polymer with cross-linked interior structures. So far no satisfactory explanation has been given to account for the deviation. In this study, we acquired additional experimental data to show that the curvilinear relationship between the log-based PDMS-coated fiber-water partition coefficient (logK(f)) and logK(ow) for polychlorinated biphenyls (PCBs) was indeed a reflection of the sorption process occurring in PDMS film other than experimental defects. The physical origin of the nonlinearity was pinpointed based on the theory of phase partitioning for HOCs. The linear relationship is observed if the solute molecule is considerably smaller than the size of a monomer unit of PDMS in that the Gibbs free energy required for cavity formation in PDMS is comparable to that in octanol. Higher free energy of cavity formation is needed to create sufficient free volume if the PCB molecular size is comparable to or larger than the monomer unit of PDMS. On the other hand, the free energy of cavity formation in octanol remains almost constant when this occurs, resulting in the observed curvilinear relationship. The proposed model adequately explains the observed data, as well as sheds lights into the physical origin of the steric interactions of large molecular size solute with the PDMS polymer network.  相似文献   

3.
Wang X  Cook R  Tao S  Xing B 《Chemosphere》2007,66(8):1476-1484
Sorption behavior of hydrophobic organic contaminants (HOCs) (i.e., pyrene, phenanthrene and naphthalene) by native and chemically modified biopolymers (lignin, chitin and cellulose) was examined. Lignins (native and treated) showed nonlinear sorption for all compounds studied, emphasizing their glassy character. Chitins and celluloses had linear isotherms for phenanthrene and naphthalene, illustrating the dominance of partitioning, while pyrene yielded nonlinear isotherms. Sorption capacity (K(oc)) of HOCs was negatively correlated with the polarity [(O+N)/C] of the biopolymers. Aromatic and alkyl+aromatic C percentages, rather than alkyl C content, demonstrated a better correlation with K(oc) values, indicating the importance of aromatic structures for HOC affinity. Hydrophobicity (K(ow))-normalized K(oc) values decreased sharply with increasing percentage of O-alkyl C versus total aliphatic C (O-alkyl C/total aliphatic C) or with polar C/(alkyl+aromatic C) ratio of the biopolymers until their values reached 80% and 4, respectively, illustrating the effect of surrounding polar groups on reducing affinity for HOCs. Overall, the results of this study highlight the role of spatial arrangement of domains within biopolymers in sorption of HOCs, and point to sorbent properties, such as functionality, polarity and structure, jointly regulating the sorption of HOCs in biopolymers.  相似文献   

4.
The ability of polydimethlysiloxane coated solid phase microextraction (SPME) fibers to predict bioavailability has been documented for a number of species and compounds. There are also a variety of established methods for establishing SPME-based bioavailability estimates; however, factors such as time until equilibrium and exposure regimen could affect fiber concentrations and have not yet been thoroughly tested. Exposure time may influence SPME fiber concentrations at equilibrium. Co-exposure of the fibers with different animals or the invertebrate species used could yield different estimates than those acquired using a shaker table system to achieve equilibrium between the sediment and SPME fibers. The current study examined the effects of time and exposure method (shaker table versus co-exposure with test species) on SPME fiber concentrations for two hydrophobic compounds: permethrin and p,p′-dichlorodiphenyldichloroethylene (DDE). An additional experiment with permethrin determined whether animal densities or fiber number influenced fiber concentrations. There were significant differences between the time required for SPME fibers to reach equilibrium when co-exposed with different species or separately, but fiber concentrations at equilibrium among treatments for both compounds were similar. Furthermore, among the 12 variations in species and fiber densities, there were no significant differences among treatments indicating that neither the route of exposure, animal density, nor fiber volume influenced SPME fiber estimates. This demonstrated that SPME fiber concentrations at equilibrium were not affected by exposure conditions, increasing their versatility in environmental assessments.  相似文献   

5.
The retention and mobility of hydrophobic organic contaminants (HOCs) in soil is mainly determined by hydrophobic partitioning to dissolved and particulate organic matter (DOM and POM, respectively). The aqueous phase, DOM, and POM fractions were extracted and separated from soils at three sites contaminated with technical chlorophenol formulations. Concentrations of chlorophenols (CP), polychlorinated phenoxyphenols (PCPP), polychlorinated diphenyl ethers (PCDE) and polychlorinated dibenzo-p-dioxins and furans (PCDD/F) were determined. The partitioning to POM, in relation to DOM, increased in all three soils with increasing hydrophobicity in the order CP < PCPP ~ PCDE ~ PCDF < PCDD. Differences in partitioning to DOM (logK(DOC)) and POM (logK(POC)) could not be explained by differences in gross organic C chemistry. Black carbon did not contribute significantly to the sorption of PCDDs, whereas >70% wood fibre in one soil resulted in a decrease of logK(POC) of 0.5 units for CPs and PCDDs. We conclude that logK(OC) for both DOM and POM need to be explicitly determined when the retention and mobility of HOCs is described and modelled in soils.  相似文献   

6.
Liao LB  Xiao XM 《Chemosphere》2006,64(9):1592-1600
Semipermeable membrane devices (SPMDs) were developed for passive in situ monitoring of organochlorine pesticides (OCPs) in aqueous solution in both laboratory and field (Pearl River Delta, China) studies. The device consisted of a thin film of neutral lipid triolein, enclosed in thin-walled tubing made of composite cellulose acetate membrane (CA) supported by linear low density polyethylene (LLDPE) (CAPE). Results from the laboratory and field application indicated that triolein-CAPE (TCAPE) could quickly and efficiently accumulate hydrophobic OCPs in water and uptake equilibrium could reached within 20h in the laboratory. Some mathematical relationships of TCAPE-water partition coefficient (logK(sw)), triolein-water partition coefficient (logK(tw)) and octanol-water partition coefficient (logK(ow)) were developed under the laboratory conditions. A good correlation of accumulation in TCAPE with r(2) values ranging from 0.55 to 0.86 for individual OCPs (n=8) and an excellent correlation of logK(sw) and logK(ow) was also obtained under the field conditions. The average OCPs concentration in the surface water could be estimated by measuring OCPs concentration in the device under the field conditions.  相似文献   

7.
8.
Wang YH  Wong PK 《Chemosphere》2003,50(4):499-505
Correlation relationships between physico-chemical properties including vapor pressures (P), water solubilities (S), Henry's law constants (H(c)), n-octanol-water partition coefficients (K(ow)), sediment-water partition coefficient (K(pw)) and biotic lipid-water partition coefficient (K(bw), bioconcentration factor) of polychlorinated-dibenzofurans (PCDFs) and their gas chromatographic retention indices (GC-RIs) were established. A model equation between GC-RIs (= RI) and these physico-chemical properties (K) of PCDFs was in a form of log K = aRI2 + bRI + c with correlation coefficients (R2) greater than 0.94, except H(c). These equations were derived from six experimental data (five experimental data for log K(bw)) in each physico-chemical properties of PCDFs reported previously. The values of log P, log S, log H(c), log K(ow), log K(pw) and log K(bw) of PCDFs predicted by these equations based on their GC-RIs in the present study derviated from those calculated by the solubility parameters for fate analysis method in a previous study by 0.49, 0.32, 0.11, 0.34, 0.14 and 0.22 log units, respectively.  相似文献   

9.
Partitioning/sorption of selected environmental pollutants (PCBs, organochlorine insecticides, triazine and amide herbicides) into dissolved humic acids (HA), soil and mineral substances was evaluated by measuring their free concentrations by solid-phase microextraction (SPME). Compounds were chosen to cover a wide range of logK(ow) (2.2-7.6). Two different types of partitioning behaviour for dissolved HA were observed. Compounds with logK(ow)>5 partitioned almost instantly into HA fraction and the remaining free fraction remained rather constant. LogK(HA) and logK(DOC) were calculated and found to be similar for commercial HA, HA standard and isolated HA. The behaviour of these compounds in soil suspension was similar, but strong sorption on CaCO3 and Florisil was also noticed. For compounds with logK(ow)<5, we have not noticed significant changes in free concentrations in HA solutions over time. In soil suspension, however, some sorption/partitioning was observed over time for some compounds, but it was matching the sorption on CaCO3 and Florisil.  相似文献   

10.
Lou L  Luo L  Yang Q  Cheng G  Xun B  Xu X  Chen Y 《Chemosphere》2012,88(5):598-604
To investigate the feasibility of using black carbon (BC) in the control of hydrophobic organic contaminants (HOCs) in sediment, we added BCs from various sources (rice straw charcoal (RC), fly ash (FC) and soot (SC)) to sediment to create different BC-inclusive sediments and studied the release of pentachlorophenol (PCP) in the sediments under different condition. Different pH values had no obvious effect on the release of PCP in BC-inclusive sediment, but solid/liquid ratio, temperature, salinity and dissolved organic matter (DOM) content had significant influences on the release of PCP in all sediments except the RC-inclusive sediment. Adding 2% RC to sediment resulted in a 90% decrease in PCP release, which was a greater decrease than observed with FC- and SC-inclusive sediments. Therefore, from the standpoint of HOC release, the application of RC is feasible for organic pollution control in the water environment.  相似文献   

11.
12.
Baker JR  Mihelcic JR  Shea E 《Chemosphere》2000,41(6):813-817
The n-octanol/water partition coefficient (K(ow)) is commonly used to predict the soil or aquatic particle water partition coefficient normalized to organic carbon (K(oc)). Many correlations are available covering several chemical classes and ranges of hydrophobicity. This work indicates the K(ow) may not be a strong predictor for persistent organic pollutants (POPs) which are defined here as chemicals with logK(ow) > 5.0. In addition, the correlation developed in this work for POPs will still result in a predicted value which is of by a factor of 15. Accordingly, care must be taken when applying K(oc) estimations using K(ow) for POPs until more suitable correlations are developed.  相似文献   

13.
Solid-phase microextraction (SPME) with gas chromatography is to be used for assay of effluent liquid samples from soil column experiments associated with VOC fate/transport studies. One goal of the fate/transport studies is to develop accurate, highly reproducible column breakthrough curves for 1,2-cis-dichloroethylene (cis-DCE) and trichloroethylene (TCE) to better understand interactions with selected natural solid phases. For SPME, the influences of the sample equilibration time, extraction temperature and the ratio of volume of sample bottle to that of the liquid sample (V(T)/V(w)) are the critical factors that could influence accuracy and precision of the measured results. Equilibrium between the gas phase and liquid phase was attained after 200 min of equilibration time. The temperature must be carefully controlled due to variation of both the Henry's constant (K(h)) and the fibre/gas phase distribution coefficient (K(fg)). K(h) decreases with decreasing temperature while K(fg) increases. Low V(T)/V(w) yields better sensitivity but results in analyte losses and negative bias of the resultant assay. High V(T)/V(w) ratio yields reduced sensitivity but analyte losses were found to be minimal, leading to better accuracy and reproducibility. A fast SPME method was achieved, 5 min for SPME extraction and 3.10 min for GC analysis. A linear calibration function in the gas phase was developed to analyse the breakthrough curve data, linear between a range of 0.9-236 microgl(-1), and a detection limit lower than 5 microgl(-1).  相似文献   

14.
Wang X  Tang S  Liu S  Cui S  Wang L 《Chemosphere》2003,51(7):617-632
Polychlorinated biphenyls (PCBs) congeners with various degrees of chlorination and substitution patterns are among the most widespread and persistent man-made organic pollutants. They are toxic, lipophilic and tend to be bioaccumulated. The knowledge of the physico-chemical properties is very useful to explain the environmental behavior of PCBs and to perform an exposure assessment. In this paper, we have used a new molecular representation, the molecular hologram, to generate quantitative structure-property relationship models to predict the physico-chemical properties of biphenyl and all of its chlorinated congeners. The investigated properties include 1-octanol/water partition coefficient (logK(ow)), aqueous solubility (-logS(w)), aqueous activity coefficient (-logY(w)), Total molecular surface area, Henry's law constant (logH). The results show that this new quantitative structure-activity relationship approach presents highly predictive models for important physico-chemical properties of PCBs.  相似文献   

15.
16.
The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day−1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons.  相似文献   

17.
X Wang  Y Dong  L Wang  S Han 《Chemosphere》2001,44(3):447-455
Acute 12 h and 24 h lethal toxicity (12 h-LC50 and 24 h-LC50) of 31 substituted phenols to Rana japonica tadpoles was determined. Results indicate that toxicity of phenols to tadpoles varied only slightly with length of exposure and the 12-h test could serve as surrogate of the 24-h test. A mechanism-based quantitative structure-activity relationship (QSAR) method was employed and 1-octanol/water partition coefficient (log K(ow))-dependent models were developed to study different modes of toxic action. Most phenols elicited their response via a polar narcotic mechanism and an excellent logK(ow)-dependent model was obtained. Soft electrophilicity and pro-electrophilicity were observed for some phenols and a good log K(ow)-dependent model was also achieved. Additionally, the significant dissociation of carboxyl on benzoic acid derivatives sharply reduced their toxicity. A statistically robust QSAR model was developed for all studied compounds with the combined application of log K(ow), energy of lowest unoccupied orbital (E(lumo)), heat of formation (HOF) and the first-order path molecular connectivity dices (1chi(p)).  相似文献   

18.
The northern fulmar (Fulmarus glacialis) is an interesting candidate for the study of patterns and levels of halogenated organic contaminants (HOCs) since they accumulate high levels of certain HOCs. In the present study we characterized a suite of established and novel HOCs in northern fulmars breeding on Bj?rn?ya in the Norwegian Arctic. A comparison between blood and liver HOC levels was made, and the levels were related to the ratios of heavier to lighter stable isotopes of nitrogen (15)N/(14)N (delta(15)N) and carbon (13)C/(12)C (delta(13)C) in muscle. A significant difference in congener patterns between blood and liver was found. The delta(13)C was not related to HOCs, neither in liver nor in blood. Weak correlations were found between delta(15)N and liver HOC levels. The 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) in northern fulmars were well above thresholds for reproductive effects in seabirds.  相似文献   

19.
Yang K  Zhu L  Lou B  Chen B 《Chemosphere》2005,61(1):116-128
The estimation of solute sorptive behaviors is essential when direct sorption data are unavailable and will provide a convenient way to assess the fate and the biological activity of organic solutes in soil/sediment environments. In this study, the sorption of 2,4-dichlorophenol (2,4-DCP) on 19 soil/sediment samples and the sorption of 13 organic solutes on one sediment were investigated. All sorption isotherms are nonlinear and can be described satisfactorily by a simple dual-mode model (DMM): q(e)=KpCe+Q0 . bCe/(1+bCe), where Kp (mlg(-1)) is the partition coefficient; Ce (microgml(-1)) is the equilibrium concentration; Q0 (microgg(-1)) is the maximum adsorption capacity; Q0 . b (mlg(-1)) is the Langmuir-type isotherm slope in the low concentration (Henry's law) range and b (mlmicrog(-1)) is a constant related to the affinity of the surface for the solute. Based on these nonlinear sorption isotherms and similar other nonlinear isotherms, it is observed that, for both polar 2,4-DCP and nonpolar phenanthrene, Kp, Q0 and Q0 . b are linearly correlated with soil/sediment organic carbon content (f(oc) in the range of 0.118-53.7%). The results indicate that the nonlinear sorption of organic solutes results primarily from interactions with soil/sediment organic matter. The K*oc K*oc=Kp/f(oc)), Qoc (Qoc=Q0/f(oc)), Loc (Loc=Q0 . b/f(oc)) and b for a given organic solute with different soils/sediments are largely invariant. Furthermore, logK*oc, logb and logLoc for various organic solutes are correlated significantly with the solute logKow or logSw (logKow in the range of 0.9 to 5.13 and logSw in the range of -6.176 to -0.070). A fundamental empirical equation was then established to calculate approximately the nonlinear sorption from soil/sediment f(oc) and solute Sw for a given solute equilibrium concentration.  相似文献   

20.
Sorption of hydrophobic organic compounds onto organoclays   总被引:2,自引:0,他引:2  
Lee SY  Kim SJ  Chung SY  Jeong CH 《Chemosphere》2004,55(5):781-785
The behavior and fate of nonionic hydrophobic organic compounds (HOCs) in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants in the environment. In our experiments, HOC sorption by hexadecyltrimethylammonium (HDTMA)-modified smectite linearly increased with the amount of HDTMA added to the clay. However, tetramethylammonium (TMA)- and dodecyltrimethylammonium (DTMA)-modified smectites showed not only inferiority in their sorption of HOC compared with the HDTMA-smectite, but also a partially decreased HOC sorption at specific surfactant loading levels. This means that the sorption of organoclays for organic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. In addition, it seems that the interlayer structure (e.g., pore size) formed at each surfactant loading level plays an important role to adsorb HOC in different amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号