首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In enhanced biological phosphorus removal (EBPR) systems, polyphosphate-accumulating organisms (PAOs) are primarily responsible for removing phosphate from wastewater. Propionate is an abundant carbon substrate in many EBPR plants and has been suggested to provide PAOs an advantage over their carbon competitors--the glycogen-accumulating organisms (GAOs). The aerobic metabolism of PAOs enriched with a propionate carbon source is studied in this paper. A metabolic model is proposed and experimentally validated to characterize the aerobic biochemical transformations by PAOs. The model predicts very well the experimental data obtained from the enriched PAO culture through solid-, liquid-, and gas-phase analyses. This model may be combined with previously formulated metabolic models to better describe the biochemical activity of PAOs with acetate and propionate as the primary carbon sources. Furthermore, it can also facilitate the study of the effect of different carbon sources on PAO-GAO competition.  相似文献   

2.
The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.  相似文献   

3.
In this study, the combined effects of temperature and solids retention time (SRT) on enhanced biological phosphorus removal (EBPR) performance and the mechanism of EBPR washout were investigated. Two pilot-scale University of Cape Town (South Africa) systems fed with synthetic wastewater were operated at 5 and 10 degrees C. The results showed that the phosphorus removal performance was optimum at total SRT ranges of 16 to 24 days and 12 to 17 days for 5 and 10 degrees C, respectively, and steady-state phosphorus removal was greater at the lower temperature. Higher SRT values of up to 32 days at 5 degrees C and 25 days at 10 degrees C slightly reduced EBPR performance as a result of increased extent of endogenous respiration, which consumed internally stored glycogen, leaving less reducing power for poly-hydroxy alkanoate (PHA) formation in anaerobic stages. The phosphorus-accumulating organism (PAO) washout SRTs of the systems were determined as 3.5 days at 5 degrees C and 1.8 days at 10 degrees C, considerably less than the washout SRTs of nitrifiers. Polyphosphorus, the main energy reserve of the EBPR bacterial consortium, was not completely depleted, even at washout points. The inability of EBPR biomass to use glycogen to generate reducing power for PHA formation was the major reason for washout. The results not only suggest that glycogen mechanism is the most rate-limiting step in EBPR systems, but also that it is an integral part of EBPR biochemistry, as proposed originally by Mino et al. (1987), and later others (Pereira et al., 1996, Erdal et al., 2002; Erdal, Z. K., 2002). The aerobic washout SRT values (2.1 and 1.2 days for 5 and 10 degrees C, respectively) of this study did not fit the linear line for PAO washout developed by Mamais and Jenkins (1992). Perhaps this was because the feeds used during this study were chemical-oxygen-demand-limited (acetate-based synthetic feed), whereas the feeds used for their study were phosphorus-limited (external acetate added to domestic wastewater), resulting in different ratios of PAOs and nonPAOs in the biomass.  相似文献   

4.
Proliferation of Glycogen Accumulating Organisms (GAOs) accounts as one of the major bottlenecks in biological phosphorus removal systems. GAO outcompeting polyphosphate accumulating organisms (PAOs) results in lower P-removal. Thus, finding optimal conditions that favour PAO in front of GAO is a current focus of research. This work shows how nitrite can provide a novel strategy for PAO enrichment. A propionate-fed GAO-enriched biomass (70% Defluviicoccus I, 18% Defluviicoccus II and 10% PAO) was subjected more than 50 d under anaerobic-anoxic conditions with nitrite as electron acceptor. These operational conditions led to a PAO-enriched sludge (85%) where GAO were washed out of the system (<10%), demonstrating the validity of the new approach for PAO enrichment. In addition, the presented suppression of Defluviicocus GAO with nitrite represents an add-on benefit to the nitrite-based systems since the proliferation of non-desirable GAO can be easily ruled out and added to the other benefits (i.e. lower aeration and COD requirements).  相似文献   

5.
Temperature and sludge age were found to be important factors in determining the outcome of competition between polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating non-polyphosphate organisms (GAOs) and the resultant stability of enhanced-biological-phosphorus removal (EBPR). At 20 degrees C and a 10-day sludge age, PAOs were dominant in an anaerobic/aerobic (A/O) sequencing-batch reactor (SBR), as a result of their higher anaerobic-acetate-uptake rate and aerobic-biomass yield than GAOs. However, at 30 degrees C and a 10-day sludge age, GAOs were able to outcompete PAOs in the A/O SBR because of their higher anaerobic-acetate-uptake rate than PAOs. At 30 degrees C and a 5-day sludge age, GAOs coexisted with PAOs in the A/O SBR, resulting in unstable EBPR performance. At 30 degrees C, reducing the sludge age from 5 to 3 days improved the EBPR efficiency drastically, and the EBPR performance was stable. The maximum specific-anaerobic-acetate-uptake rates of GAO-enriched sludge were affected by temperature with the Arrhenius temperature coefficient theta of 0.042 (degrees C(-1) between 10 and 30 degrees C. The effect of sludge age (5 and 10 days) on the maximum specific-anaerobic-acetate-uptake rates of GAO-enriched activated sludge, however, was not significant. For the PAO-enriched activated sludge, the maximum specific-anaerobic-acetate-uptake rate did not change significantly between 20 and 30 degrees C, but significantly increased from 0.38 to 0.52 mmol-C/ mmol-C/h as the sludge age decreased from 10 to 3 days at 30 degrees C.  相似文献   

6.
A sequencing batch reactor was used to study the possibility of harvesting polyhydroxyalkanoate (PHA) from enhanced biological phosphorus removal (EBPR) processes without compromising treatment quality. Because, in EBPR, the highest PHA concentrations are observed after exposure of the sludge to anaerobic conditions, PHA accumulation was evaluated with collection of waste activated sludge (WAS) at the end of the anaerobic stage, in addition to the traditional removal after the aerobic stage. The system achieved good phosphorus removal, regardless of the point of WAS collection. When sludge was harvested at the end of the anaerobic stage, the PHA content of the sludge ranged from 7 to 16 mg PHA/100 mg mixed liquor volatile suspended solids. Although this level of PHA production is below levels obtained with pure cultures, the demonstrated ability to harvest PHA, while simultaneously satisfying phosphorus removal in an EBPR process, is a key initial step towards of the use of wastewater treatment plants for PHA production.  相似文献   

7.
阐述了3种不同基质(乙酸盐、丙酸盐和葡萄糖)在强化生物除磷系统中的生化模型反应机理.重点介绍了聚磷菌(PAOs)、聚糖菌(GAOs)和产乳酸菌在厌氧/好氧条件下对能量及还原力(NADH2)的利用方式;聚-β-羟基链烷酸盐(PHA)的合成方式及存在形式,糖原、乳酸(L型)的代谢途径等.虽然控制基质条件可以实现稳定的强化生物除磷效果,但目前的生化模型并不能完全解释所有的代谢过程,今后要在分离纯种的PAOs及相关生化代谢过程中酶的活动等方面进行深入研究.  相似文献   

8.
Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.  相似文献   

9.
A new, simple method for directly measuring activated sludge density was developed and applied, and the effects of biomass density on activated sludge settling in full-scale systems were evaluated. The driving force of sedimentation is the physical weight of the biological solids, but the role of biomass density in sedimentation has been largely ignored. Biomass density varied amongst treatment systems and this variability was correlated with settleability. Floc densities were approximately normally distributed within individual samples. Nonsoluble phosphorus content was a major contributor to density, and plants with enhanced biological phosphorus removal (EBPR) configurations generally had higher densities and better settleability than non-EBPR plants with similar filament contents. These results suggest that future work may benefit from consideration of density as a factor affecting activated sludge settling.  相似文献   

10.
Enhanced Biological Phosphorus Removal (EBPR) under anoxic conditions was achieved using a Biological Nutrient Removal (BNR) system based on a modification of the DEPHANOX configuration. Double-probe Fluorescence in Situ Hybridization (FISH) revealed that Polyphosphate Accumulating Organisms (PAOs) comprised 12.3 +/- 3.2% of the total bacterial population in the modified DEPHANOX plant. The growing bacterial population on blood agar and Casitone Glycerol Yeast Autolysate agar (CGYA) medium was 16.7 +/- 0.9 x 10(5) and 3.0 +/- 0.6 x 10(5) colony forming units (cfu) mL(-1) activated sludge, respectively. A total of 121 bacterial isolates were characterized according to their denitrification ability, with 26 bacterial strains being capable of reducing nitrate to gas. All denitrifying isolates were placed within the alpha-, beta-, and gamma-subdivisions of Proteobacteria and the family Flavobacteriaceae. Furthermore, a novel denitrifying bacterium within the genus Pseudomonas was identified. This is the first report on the isolation and molecular characterization of denitrifying bacteria from EBPR sludge using a DEPHANOX-type plant.  相似文献   

11.
A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.  相似文献   

12.
剩余污泥水解酸化液磷去除的影响因素研究   总被引:3,自引:2,他引:3  
城市污水厂剩余污泥水解酸化后可产生高浓度挥发性有机酸(VFAs),其中的乙酸和丙酸是增强生物除磷(EBPR)工艺的有利基质.但水解酸化液中含有大量的磷,如不进行处理就作为碳源回用到污水处理工艺中,势必增加除磷负荷.利用鸟粪石沉淀法可以去除污水中的磷.对城市污水厂剩余污泥水解酸化液形成鸟粪石的影响因素进行了试验研究.结果表明,在最佳工艺条件下,正磷和总磷的去除率分别可达92.5%和83.8%.  相似文献   

13.
Activated sludge systems are widely used in wastewater treatment. Organic carbon removal and nutrient removal are important for stringent water discharge standards. Therefore, activated sludge systems are widely used to remove carbon, nitrogen and phosphorus in new wastewater treatment systems or upgrades of existing systems. The determination of system compounds and kinetic parameters for modelling of these systems are important. For this purpose, respirometric measurements are used to reveal the electron consumption rate of biomass. In order to determine OUR (oxygen uptake rate) and NUR (nitrate uptake rate) parameters, a laboratory scale activated sludge system, including anaerobic, anoxic and aerobic zones, was developed. The performance of the system was continuously controlled from influent and effluent samples. OUR and NUR measurements indicated the kind of nitrogen-phosphorus removal systems required. Moreover, phosphorus uptake in the anoxic zone was investigated. It was found that phosphorus uptake in the anaerobic zone was related to substrate type consumed biologically. The OUR and NUR were found to be lower than in continuous activated sludge measurements. This may be because the mixed culture of the system affected the system performance, owing to competition between denitrification bacteria and poly-P bacteria.  相似文献   

14.
Enhanced biological phosphorous removal (EBPR) performance was found to be adequate with reduced return-activated sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller-than-typical anaerobic zone volume (1.08 hours hydraulic retention time [HRT]). Three identical parallel biological nutrient removal pilot plants were fed with strong, highly fermented (160 mg/L volatile fatty acids [VFAs]), domestic and industrial wastewater from a full-scale wastewater treatment facility. The pilot plants were operated at 100, 50, 40, and 25% RAS (percent of available RAS) flows to the anaerobic tank, with the remaining RAS to the anoxic tank. In addition, varying anaerobic HRT (1.08 and 1.5 hours) and increased hydraulic loading (35% increase) were examined. The study was divided into four phases, and the effect of these process variations on EBPR were studied by having one different variable between two identical systems. The most significant conclusion was that returning part of the RAS to the anaerobic zone did not decrease EBPR performance; instead, it changed the location of phosphorous release and uptake. Bringing less RAS to the anaerobic and more to the anoxic tank decreased anaerobic phosphorus release and increased anoxic phosphorus release (or decreased anoxic phosphorus uptake). Equally important is that, with VFA-rich influent wastewater, excessive anaerobic volume was shown to hurt overall phosphorus removal, even when it resulted in increased anaerobic phosphorus release.  相似文献   

15.
Anammox enrichment from different conventional sludges   总被引:23,自引:0,他引:23  
Chamchoi N  Nitisoravut S 《Chemosphere》2007,66(11):2225-2232
Three sets of sequencing batch reactor (SBR) were used for Anammox enrichment from conventional sludges including upflow anaerobic sludge blanket, activated sludge, and anaerobic digestion sludge. After four months of operation, the Anammox activity occurred in all reactors allowing continuous removal of ammonium and nitrite. The morphology of the cultivated Anammox sludge was observed using scanning electron microscope. The photographs showed that the obtained culture was mostly spherical in shape, presumably Anammox culture. There were also filamentous-like bacteria co-existing in the system. Fluorescence in situ hybridization (FISH) analysis using 16S rRNA targeting oligonucleotide probes PLA46 and Amx820 showed that the dominant population developed in all SBRs was hybridized with both PLA46 and Amx820 gene probes. It means that the cultivated biomass in all SBRs was classified in the group of Planctomycetales bacteria with respect to the anaerobic ammonium-oxidizing bacteria, Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis. Numerous time sequences were tested in this experiment. The shortest workable reaction time was found in the range from 5 to 7 h. Good quiescence of sludge was obtained at 30 min of settle period followed by a discharge period of 15 min. A long-term performance showed a near perfect removal of nitrite based on the influent NO2(-)-N concentration of 50-70 mg l(-1). The maximum ammonia removal efficiency was 80% with the influent NH4(+)-N concentration of 40-60 mg l(-1). It is, therefore, concluded that Anammox cultivation from conventional sludges was highly possible under control environment within four months.  相似文献   

16.
Enhanced biological phosphorus removal (EBPR) is based on poly-phosphate accumulating organisms' (PAOs) unique features of "luxury" phosphate uptake during aerobic conditions and phosphate release in anaerobic conditions. It is believed that poly-phosphate accumulation is accompanied by the uptake and accumulation of potassium ions (K+) and magnesium ions (Mg2+). The release of phosphate under anaerobic conditions is also accompanied by the release of both cations. The objective of this research was to evaluate the effect of pH and Mg2+ on the biological phosphate uptake and release behavior of activated sludge mixed liquor during aeration and sedimentation. Research results indicate that Mg2+, supplied either by magnesium chloride (MgCl2) or magnesium hydroxide [Mg(OH)2], stimulated phosphate uptake during the aeration period, while pH increase, caused by the application of Mg(OH)2, enhanced phosphate release during the sedimentation period. It is also noted in our experiments with MgCl2 that Mg2+ slightly inhibited anaerobic phosphate release.  相似文献   

17.
Liu Y  Chen Y  Zhou Q 《Chemosphere》2007,66(1):123-129
In the literature most of the studies on the effect of pH on enhanced biological phosphorous removal were conducted with the acetate wastewater, and the pH was controlled during the entire anaerobic and aerobic stages. This paper investigated the influence of anaerobic initial pH control, which will be more practical than the entire process pH control strategy, on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids. Typical pH profile showed that both the initial alkaline and acidic pH tended to neutralize due to the consumption of short-chain fatty acid (SCFA) and intracellular pH regulation by polyphosphate accumulating organisms (PAOs). It was observed that the glycogen degradation and polyhydroxyalkanoates (PHA) accumulation decreased with increasing initial pH, which disagreed with previous reports. In the literature the metabolisms of both glycogen and PHA by PAOs in the acetate wastewater were independent of pH. An anaerobic mechanism model was proposed to explain the intra- and extra-cellular pH buffer nature of PAOs, and to address the reasons for increased polyphosphate degradation and decreased PHA synthesis and glycogen degradation at higher pH. The optimal initial pH for higher soluble ortho-phosphorus (SOP) removal efficiency should be controlled between 6.4 and 7.2. This pH control strategy will be easier to use in practice of wastewater treatment plant.  相似文献   

18.
Zhang C  Chen Y  Liu Y 《Chemosphere》2007,69(11):1713-1721
In most studies on phosphorus- and glycogen-accumulating organisms (PAO and GAO), pH was controlled constantly throughout the entire anaerobic and aerobic periods, and acetic acid was used as the carbon source. In this paper, the effect of long-term initial pH values on PAO and GAO was investigated with mixed propionic and acetic acids as carbon sources. It was observed that with pH increasing from 6.4 to 8.0, the anaerobic propionic acid uptake rate by PAO linearly increased but that by GAO proportionally decreased. At pH 6.70 and pH 7.51, PAO and GAO exhibited the same acetic and propionic acid uptake rates, respectively. The acetic acid uptake rate by PAO was greater than that by GAO at pH > 6.70, and the propionic acid uptake rate by PAO was higher than that by GAO at pH > 7.51, which indicated that PAO would take predominance over GAO at pH > 7.51. Poly-3-hydroxybutyrate, poly-3-hydroxyvalerate and poly-3-hydroxy-2-methylvalerate shared 7%, 62% and 31%, respectively in the PAO system, and 11%, 44% and 45% respectively in the GAO system, and these fractions were observed independent of pH either in the PAO or in the GAO system. In the PAO system, with the increase of pH, the phosphorus removal efficiency was improved greatly, and a phosphorus removal efficiency of 100% was achieved at 8.0. Further investigation showed that the higher phosphorus removal efficiency at higher pH was mainly caused by a biological effect instead of chemical one.  相似文献   

19.
为了更好地发挥产氢产酸/同型产乙酸耦合系统在废水厌氧发酵生产乙酸方面的优势,有必要寻找一种简单有效的方法以获得该系统产酸的优化条件.利用经过加热处理并活化的厌氧污泥作种泥,以模拟废水中的葡萄糖为底物,针对发酵时间、底物浓度、种泥浓度、初始pH进行4因素10水平均匀设计实验,得到了乙酸生产指标与产酸条件之间关系的回归方程;也得到了以高乙酸产量为主要目标导向同时兼顾高乙酸产率和高乙酸生产强度目标的优化条件;优化条件实验乙酸浓度比均匀设计中最高乙酸浓度提高20%左右.研究表明,将均匀设计应用于废水产氢产酸/同型产乙酸耦合产酸条件优化,可以避免盲目性,迅速获得满意结果.  相似文献   

20.
The biochemical acidogenic potential (BAP) test is an anaerobic characterization method for wastewater. Fermentable organic fractions are obtained through modeling BAP test results. This method was compared to more common fractionation methods such as settling, coagulation, and respirometry, but no direct relationship was found. Biochemical acidogenic potential testing was thus considered to bring new and complementary information. The settleable matter accounted for approximately 50% of the fermentable matter, with a rate comparable to that of aerobic hydrolysis, suggesting a potential assimilable carbon source that could be liberated in sewers or in anaerobic processes. It was also observed that respirometry could underestimate the amount of fermentable substrates while overestimating that of hydrolyzable matter and of heterotrophic biomass involved in anaerobic processes. The BAP fractions are related to the wastewater capacity to produce volatile fatty acids, which are the main substrates of the micro-organisms responsible for enhanced biological phosphorus removal (EBPR). The potential contribution of the BAP fractionation to assist the design, operation, and modeling of the activated-sludge EBPR processes was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号