首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The changing contaminant pattern with travelled distance was investigated in the anaerobic groundwater plume downstream from an extended zone containing residual NAPL at a former gas manufacturing plant. With increasing distance, O- and N-heterocyclic aromatic compounds are enriched in the plume relative to the usually assessed coal tar constituents (poly- and monocyclic aromatic compounds). In a first approximation, the overall concentration decrease of the investigated compounds follows a first order overall decay. The half life distance in the plume downgradient from the source varied between 20 m for benzene and up to 167-303 m for alkyl-naphthalenes. Acenaphthene is degraded only within about 50 m downstream from the source area, then its concentration remains constant (ca. 180 microg/l) and far above the legal limit. Dimethyl-benzofurans were the most recalcitrant among all compounds which could be quantified with the analytical method available. The overall groundwater contamination in the plume is seriously underestimated if only BTEX and 16-EPA-PAHs are monitored.  相似文献   

2.
就SEAR技术修复土壤及地下水中NAPL污染的原理及发展现状进行了综述.SEAR技术可以快速有效地去除土壤和地下水中的NAPL污染源,适于多种污染物.该技术通过增溶和增流2种途径提高NAPL污染物的去除率.表面活性剂的选择和微乳液体系的调配是SEAR技术实施的关键环节.将SEAR技术用于高浓度NAPL污染源的治理,并与生物修复和自然降解相结合,是经济高效的治理方案.  相似文献   

3.
《Environmental Forensics》2013,14(3-4):227-241
The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH: TOC) for Bering River coal field (BRCF) sources are too low--i.e. the coals are over mature--to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH: TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature.  相似文献   

4.
《Environmental Forensics》2002,3(3-4):227-241
The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low—i.e. the coals are over mature—to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH:TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature.  相似文献   

5.
Jafvert CT  Lane D  Lee LS  Rao PS 《Chemosphere》2006,62(2):315-321
The equilibrium distributions, between water and coal-tar contaminated sediment, of 16 monocyclic and polycyclic aromatic hydrocarbons were measured and evaluated for consistency with a Raoult's Law-based quantitative relationship. The quantitative relationship calculates the pore water concentration as the product of the aqueous solubility (or for compounds that are solid at room temperature, the aqueous super-cooled liquid solubility) and the mole fraction concentration of the compound within the liquid coal tar. Sediment was collected at five locations at two depths within a 120 m stretch of a river adjacent to a former manufactured gas plant, and all samples contained non-aqueous phase liquid (NAPL) coal tar. Although the amount of coal tar varied between samples by over an order of magnitude, the Raoult's Law-based NAPL-water partition coefficients for each monocyclic or 2- or 3-ring polycyclic aromatic hydrocarbon measured in this study generally varied within a factor of 2 over all sediments.  相似文献   

6.
Chen CS  Rao PS  Delfino JJ 《Chemosphere》2005,60(11):39-1582
The cosolvent-induced dissolution of polynuclear aromatic hydrocarbons (PAHs) from contaminated soil caused by oxygenated fuel spills was studied. Oxygenated fuel induces a solvent flushing effect on the contaminated soil due to the high content of oxygenated compounds (i.e., methanol, ethanol, and methyl tert butyl ether (MTBE)). The miscible displacement techniques were applied to evaluate the increased potential for secondary contamination in an impacted site. Significant solubility enhancement of the 18 PAHs monitored during fuel spill simulation and cosolvent flushing is clearly evident when compared to normal water dissolution. The breakthrough concentration profile for each PAH constituent was integrated over the cumulative effluent volume (i.e., the zeroth moment) to determine the total PAH mass removed during the experiment. The removal efficiency of PAHs ranges from 46.6% to 99.9% in three oxygenated fuels (i.e., M85, E85, and oxygenated gasoline) during the fuel spill. Several factors including hydrophobicity of compounds, nonequilibrium dissolution due to nonuniform coal tar distribution, and heterogeneous media properties affect the oxygenated compound-induced dissolution process. This study provides a basis to predict the facilitated transport of hydrophobic organic compounds from subsurface environment due to the cosolvent effects of oxygenated fuels.  相似文献   

7.
A variety of additives are used in gasoline, and they can sometimes be used to help identify the source, timing, or number of gasoline spills at a site. The physicochemical characteristics of the additive MTBE, and its historical use pattern in the United States since 1979, make it a key compound to study when conducting forensic investigations of gasoline spills. MTBE's low octanol: water distribution coefficient and high solubility cause it to dissolve into groundwater more readily than other gasoline components. Thus, the initial appearance of MTBE in the groundwater is often a good indicator of a recent gasoline spill. MTBE's very low retardation and minimal biodegradation in groundwater can be used with transport rate calculations to establish relatively accurate estimates of spill timing. Because MTBE moves faster in groundwater than BTEX compounds, if a gasoline spill site has a BTEX plume that is longer than the MTBE plume, it is certain that at least two distinctly different gasoline releases have occurred. This allows for the identification of new gasoline spills, even when substantial subsurface petroleum contamination already exists. An example application is reviewed to demonstrate the use of MTBE data in forensic investigations.  相似文献   

8.
Remediation actions at contaminated sites are based on multiple numerical model scenarios considering different parameter distributions, source positions and contaminant transport paths. In some cases the excess of scenarios is due to uncertainties in the conceptual model as a result of the spread of contamination through heterogeneities in the physical system. Reduction of project hypotheses and conceptual model uncertainty is therefore needed. This result can be achieved by coupling hydrogeological investigations with environmental forensic techniques, better localization of the source and understanding of contamination history. In this respect, in the present study, compositional fingerprinting and groundwater flow modeling were applied to a former oil storage facility where, even though a hydraulic barrier had been built to stop the hydrocarbon plume, the presence of some hydrocarbons was still found in downgradient monitoring wells. The final aim was to evaluate the efficacy of the hydraulic barrier and identify of the source of pollution. Fingerprinting results indicated pollution with a gasoline-diesel mixture much altered by water washing and/or biodegradation. Comparison of seven groundwater samples collected in wells and monitoring wells was performed by analyzing the volatile fraction (BTEX) and the total ion chromatogram (TIC), focusing attention on: n-alkanes (m/z 85), alkylcyclohexanes (m/z 83), isoprenoids (m/z 113), C4-alkylbenzenes (m/z 134), C3-C6 alkylbenzenes and polycyclic aromatic hydrocarbons (PAHs). The most probable scenario was then identified by combining the results of fingerprinting with different contaminant paths obtained using the numerical model.  相似文献   

9.
A coal tar contaminated site was characterized using traditional and innovative investigation methods. A careful interpretation of hydrogeological and hydrogeochemical data allowed for the conceptualization of the heterogeneous coal tar distribution in the subsurface. Past and future contaminant release from the source zone was calculated using a modeling framework consisting of a three-dimensional steady-state groundwater flow model (MODFLOW) and two hydrogeochemical models (MIN3P). Computational time of long-term simulations was reduced by simplifying the coal tar composition using 3 composite and 2 individual constituents and sequential application of a 2D centerline model (for calibration and predictions) and a 3D model (only for predictions). Predictions were carried out for a period of 1000 years. The results reveal that contaminant mass flux is governed by the geometry of zones containing residual coal tar, amount of coal tar, its composition and the physicochemical properties of the constituents. The long-term predictions made using the 2D model show that even after 1000 years, source depletion will be small with respect to phenanthrene, 89% of initial mass will be still available, and for the moderately and sparingly soluble composite constituents, 60% and 98%, respectively.  相似文献   

10.
A model, which employs the use of high precision stable lead isotopic analyses, has been developed to estimate the age of hydrocarbon releases. The ALAS Model (Anthropogenic Lead ArchaeoStratigraphy) is based on calibrated, systematic increases in lead isotope ratios of gasolines caused by shifts in sources of lead ores used by the U.S. lead industry, including manufacturers of alkylleads, to more radiogenic Mississippi Valley Type (MVT) deposits. Acquisition of high quality samples (free product, gasoline-impacted soil and groundwater) of known age and subsequent analyses of the hydrocarbon component by high precision lead isotopic analyses by thermal ionization mass spectrometry (TIMS) have produced the ALAS Model calibration curve. Age uncertainties range from - 1 to 2 years for gasoline releases which occurred between 1965 and 1990, the major era of leaded gasoline usage. Analytical methods required to measure lead isotope ratios on ~5 nanograms of lead with precisions and accuracy of < - 0.1% (2 SEM ) are discussed in detail. Published lead isotopic measurements of gasoline-derived anthropogenic lead of samples throughout the United States are used to demonstrate the wide geographic range over which the ALAS Model may be applied. Two representative case studies involving an early 1970s free product release in California and the discrimination of a 1970s from modern unleaded gasoline release in Florida demonstrate the use of the model on single and multiple hydrocarbon releases, respectively, in different geographic regions of the United States. A third investigation focuses on the use of lead isotopes to correlate dissolved phase hydrocarbons with their source, in this case, unleaded (aka low lead) gasoline releases in New Jersey. Dissolved phase hydrocarbons (BTEX/MTBE) are shown to carry the lead isotopic signature of the unleaded gasoline into groundwater, allowing the specific source of the release to be identified. Investigations of lead isotopes as tracers of MTBE in groundwater are ongoing. However, both laboratory and field data indicate MTBE carries the lead isotopic signature of its unleaded gasoline source into groundwater, demonstrating the potential of the lead isotopic system as a discriminant of MTBE sources. Although developed to estimate the age of leaded gasoline releases, the ALAS Model has been successfully applied in studies requiring age dating of jet-A, diesel, kerosene, motor oil, and heating oil. These petroleum distillates are suspected of accidentally acquiring small, yet significant quantities of alkylleads during refining, allowing accurate ALAS Model ages to be determined. When lead levels in these petroleum distillates are within their normal range, typically tens to hundreds of ppb lead, it is possible to use lead isotopic ratios to correlate environmental releases of these products to their source or other releases.  相似文献   

11.
Bottom sediment and suspended sediment samples from Hamilton Harbour (western Lake Ontario) and from a major tributary were profiled using polycyclic aromatic hydrocarbons (PAH) and thia-arenes as source apportionment tracers. Ratios of selected PAH and ratios of monomethyl and dimethyl/ethyl dibenzothiophenes to the parent dibenzothiophenes were calculated. Thia-arene and PAH profiles of Standard Reference Material SRM 1649 (urban dust/organics), SRM 1650 (diesel), SRM 1597 (coal tar), Hamilton coal tar and a composite Hamilton air particulate sample provided source sample data. The gas chromatography-mass spectrometry (GC-MS) chromatograms of all sample extracts were dominated by homocyclic PAH but interpretation of PAH profiles with respect to source was difficult. In contrast, thia-arene analyses revealed more distinct differences in profiles of samples collected in different areas of the harbour, including the tributary. These results indicated that areas of coal tar-contaminated sediment are potential contributors to the overall contaminant burden of sediments and suspended sediments in Hamilton Harbour. These data also indicated that contaminants related to mobile combustion sources were entering the harbour via a major tributary.  相似文献   

12.
A variety of additives are used in gasoline, and they can sometimes be used to help identify the source, timing, or number of gasoline spills at a site. The physicochemical characteristics of the additive MTBE, and its historical use pattern in the United States since 1979, make it a key compound to study when conducting forensic investigations of gasoline spills. MTBE's low octanol : water distribution coefficient and high solubility cause it to dissolve into groundwater more readily than other gasoline components. Thus, the initial appearance of MTBE in the groundwater is often a good indicator of a recent gasoline spill. MTBE's very low retardation and minimal biodegradation in groundwater can be used with transport rate calculations to establish relatively accurate estimates of spill timing. Because MTBE moves faster in groundwater than BTEX compounds, if a gasoline spill site has a BTEX plume that is longer than the MTBE plume, it is certain that at least two distinctly different gasoline releases have occurred. This allows for the identification of new gasoline spills, even when substantial subsurface petroleum contamination already exists. An example application is reviewed to demonstrate the use of MTBE data in forensic investigations.  相似文献   

13.
A volume of sand containing coal tar creosote was emplaced below the water table at CFB Borden to investigate natural attenuation processes for complex biodegradable mixtures. Coal tar creosote is a mixture of more than 200 polycyclic aromatic hydrocarbons, heterocyclic compounds and phenolic compounds. A representative group of seven compounds was selected for detailed study: phenol, m-xylene, naphthalene, phenanthrene, 1-methylnaphthalene, dibenzofuran and carbazole. Movement of groundwater through the source led to the development of a dissolved organic plume, which was studied over a 4-year period. Qualitative plume observations and mass balance calculations indicated two key conclusions: (1) compounds from the same source can display distinctly different patterns of plume development and (2) mass transformation was a major influence on plume behaviour for all observed compounds.  相似文献   

14.
A model, which employs the use of high precision stable lead isotopic analyses, has been developed to estimate the age of hydrocarbon releases. The ALAS Model (Anthropogenic Lead ArchaeoStratigraphy) is based on calibrated, systematic increases in lead isotope ratios of gasolines caused by shifts in sources of lead ores used by the U.S. lead industry, including manufacturers of alkylleads, to more radiogenic Mississippi Valley Type (MVT) deposits. Acquisition of high quality samples (free product, gasoline-impacted soil and groundwater) of known age and subsequent analyses of the hydrocarbon component by high precision lead isotopic analyses by thermal ionization mass spectrometry (TIMS) have produced the ALAS Model calibration curve. Age uncertainties range from  ± 1 to 2 years for gasoline releases which occurred between 1965 and 1990, the major era of leaded gasoline usage. Analytical methods required to measure lead isotope ratios on ∼5 nanograms of lead with precisions and accuracy of < ± 0.1% (2SEM) are discussed in detail. Published lead isotopic measurements of gasoline-derived anthropogenic lead of samples throughout the United States are used to demonstrate the wide geographic range over which the ALAS Model may be applied. Two representative case studies involving an early 1970s free product release in California and the discrimination of a 1970s from modern unleaded gasoline release in Florida demonstrate the use of the model on single and multiple hydrocarbon releases, respectively, in different geographic regions of the United States. A third investigation focuses on the use of lead isotopes to correlate dissolved phase hydrocarbons with their source, in this case, unleaded (aka low lead) gasoline releases in New Jersey. Dissolved phase hydrocarbons (BTEX/MTBE) are shown to carry the lead isotopic signature of the unleaded gasoline into groundwater, allowing the specific source of the release to be identified. Investigations of lead isotopes as tracers of MTBE in groundwater are ongoing. However, both laboratory and field data indicate MTBE carries the lead isotopic signature of its unleaded gasoline source into groundwater, demonstrating the potential of the lead isotopic system as a discriminant of MTBE sources. Although developed to estimate the age of leaded gasoline releases, the ALAS Model has been successfully applied in studies requiring age dating of jet-A, diesel, kerosene, motor oil, and heating oil. These petroleum distillates are suspected of accidentally acquiring small, yet significant quantities of alkylleads during refining, allowing accurate ALAS Model ages to be determined. When lead levels in these petroleum distillates are within their normal range, typically tens to hundreds of ppb lead, it is possible to use lead isotopic ratios to correlate environmental releases of these products to their source or other releases.  相似文献   

15.
The noble gas radon has a strong affinity to non-aqueous phase-liquids (NAPLs). That property makes it applicable as naturally occurring partitioning tracer for assessing residual NAPL contamination of aquifers. In a NAPL contaminated aquifer, radon dissolved in the groundwater partitions preferably into the NAPL. The magnitude of the resulting radon deficit in the groundwater depends on the NAPL-specific radon partition coefficient and on the NAPL saturation of the pore space. Hence, if the partition coefficient is known, the NAPL saturation is attainable by determination of the radon deficit. After a concise discussion of theoretical aspects regarding radon partitioning into NAPL, related experimental data and results of a field investigation are presented. Aim of the laboratory experiments was the determination of radon partition coefficients of multi-component NAPLs of environmental concern. The on-site activities were carried out in order to confirm the applicability of the "radon method" under field conditions.  相似文献   

16.
Data from long-term groundwater sampling, limited coring, and associated studies are synthesised to assess the variability and intrinsic remediation/natural attenuation of a dissolved hydrocarbon plume in sulphate-rich anaerobic groundwater. Fine vertical scale (0.25- and 0.5-m depth intervals) and horizontal plume-scale (>400 m) characteristics of the plume were mapped over a 5-year period from 1991 to 1996. The plume of dissolved BTEX (benzene, toluene, ethylbenzene, xylene) and other organic compounds originated from leakage of gasoline from a subsurface fuel storage tank. The plume was up to 420 m long, less than 50 m wide and 3 m thick. In the first few years of monitoring, BTEX concentrations near the point of leakage were in approximate equilibrium with non-aqueous phase liquid (NAPL) gasoline. NAPL composition of core material and long-term trends in ratios of BTEX concentrations in groundwater indicated significant depletion (water washing, volatilisation and possibly biodegradation) of benzene from residual NAPL after 1992. Large fluctuations in BTEX concentrations in individual boreholes were shown to be largely attributable to seasonal groundwater flow variations. A combination of temporal and spatial groundwater quality data was required to adequately assess the stationarity of plumes, so as to allow inference of intrinsic remediation. Contoured concentration data for the period 1991 to 1996 indicated that plumes of toluene and o-xylene were, at best, only partially steady state (pseudo-steady state) due to seasonal groundwater flow changes. From this analysis, it was inferred that significant remediation by natural biodegradation was occurring for BTEX component plumes such as toluene and o-xylene, but provided no conclusive evidence of benzene biodegradation. Issues associated with field quantification of intrinsic remediation from groundwater sampling are highlighted. Preferential intrinsic biodegradation of selected organic compounds within the BTEX plume was shown to be occurring, in parallel with sulphate reduction and bicarbonate production. Ratios of average hydrocarbon concentrations to benzene for the period 1991 to 1992 were used to estimate degradation rates (half-lives) at various distances along the plume. The estimates varied with distance, the narrowest range being, for toluene, 110 to 260 days. These estimates were comparable to rates determined previously from an in situ tracer test and from plume-scale modelling.  相似文献   

17.
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.  相似文献   

18.
Two industrial sites were investigated based on years of available hydrogeologic information and monitoring data for soil and groundwater. Collected data were forensically evaluated using age-dating and fingerprinting methods. The previous business uses of the project sites were as a gas station, laundry/dry-cleaning service, and car wash with petroleum underground storage tanks (USTs). As a result, these sites were exposed to a number of toxic contaminants at relatively high concentrations. Source control was necessary for successful remediation and the ultimate removal of the remaining compounds from these industrial sites. Although contaminated soil around the source was excavated during the remedial action and the high concentrations of contaminants were reduced, typical groundwater contaminants such as petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, xylenes (BTEX), and oxygenates including methyl tert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA) were persistently found at the studied sites around the source points. The plume and concentration of contaminants had changed their shapes and strength for all monitoring periods. Thus, additional source control seems to be a requirement for the complete removal of source contamination, which must be ascertained with groundwater and soil monitoring on a regular time base. For the study sites, monitored natural attenuation was relatively feasible for the long-term plan; however, it did not offer a perfect remediation solution for an ultimate goal because of residual toxic compounds that might have affected the surrounding residential areas at higher concentrations than their health limits. Therefore, as a remediation strategy, the combination of clean-up technology and natural attenuation with monitoring activities are more highly recommended than either clean-up or natural attenuation used separately.  相似文献   

19.
This study demonstrates the capabilities of a typical medical X-ray Computed Tomography (CT) scanner to non-destructively quantify non-aqueous phase liquid (NAPL) volumes, saturation levels, and three-dimensional spatial distributions in packed soil columns. Columns packed with homogeneous sand, heterogeneous sand, or natural soil, were saturated with water and injected with known quantities of gasoline or tetrachloroethene and scanned. A methodology based on image subtraction was implemented for computing soil porosity and NAPL volumes in each 0.35 mm x 0.35 mm x 1 mm voxel of the columns. Elimination of sample positioning errors and instrument drift artifacts was essential for obtaining reliable estimates of above parameters. The CT data-derived total NAPL volume was in agreement with the measured NAPL volumes injected into the columns. CT data-derived NAPL volume is subject to a 2.6% error for PCE and a 15.5% error for gasoline, at average NAPL saturations as low as 5%, and is mainly due to instrument noise. Non-uniform distributions of NAPL due to preferential flow, and accumulation of NAPL above finer-grained layers could be observed from the data on 3-D distributions of NAPL volume fractions.  相似文献   

20.
Oxygenates present in gasoline, such as ethanol and MTBE, are a concern in subsurface contamination related to accidental spills. While gasoline hydrocarbon compounds have low solubility, MTBE and ethanol are more soluble, ethanol being completely miscible with water. Consequently, their fate in the subsurface is likely to differ from that of gasoline. To evaluate the fate of gasoline containing oxygenates following a release in the unsaturated zone shielded from rainfall/recharge, a controlled field test was performed at Canadian Forces Base Borden, in Ontario. 200L of a mixture composed of gasoline with 10% ethanol and 4.5% MTBE was released in the unsaturated zone, into a trench 20cm deep, about 32cm above the water table. Based on soil cores, most of the ethanol was retained in the source, above the capillary fringe, and remained there for more than 100 days. Ethanol partitioned from the gasoline to the unsaturated pore-water and was retained, despite the thin unsaturated zone at the site (~35cm from the top of the capillary fringe to ground surface). Due to its lower solubility, most of the MTBE remained within the NAPL as it infiltrated deeper into the unsaturated zone and accumulated with the gasoline on top of the depressed capillary fringe. Only minor changes in the distribution of ethanol were noted following oscillations in the water table. Two methods to estimate the capacity of the unsaturated zone to retain ethanol are explored. It is clear that conceptual models for sites impacted by ethanol-fuels must consider the unsaturated zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号