首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
厌氧氨氧化颗粒污泥经过长期保存会逐渐解体成絮状,但目前关于保存后期的饥饿环境对不同形态污泥的影响尚缺乏深入研究。针对该问题,以饥饿15 d颗粒解体后的厌氧氨氧化絮状污泥作为接种污泥,考察了其颗粒化过程及其对于反应器启动和运行的影响,同时对比研究了絮状和颗粒状厌氧氨氧化污泥对于饥饿的响应及其活性恢复情况。结果表明:饥饿10 d后补料继续培养3个批次,厌氧氨氧化颗粒污泥反应活性的恢复速率高于絮状污泥;接种厌氧氨氧化絮状污泥80 d左右,反应器中NH_4~+-N和NO_2~--N的去除率均达到100%,160 d可以实现污泥的颗粒化。此研究结果可为利用长期保存下的种泥启动厌氧氨氧化反应器提供参考。  相似文献   

2.
有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响   总被引:1,自引:0,他引:1  
养殖沉积物中反硝化作用对于缓解氮污染有重要的作用,沉积物中的反硝化和厌氧氨氧化菌可将化合态氮转变为氮气,从而有效降低污染,有机碳在该过程中有着重要的作用。为了解有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响,采取理化分析和分子生物学分析等方法,以养殖池塘沉积物为基质、人工配水为营养液,添加不同浓度的淀粉,分析120 h内底物亚硝氮(NO_2~--N)、硝氮(NO_3~--N)、氨氮(NH_4~+-N)和TOC浓度,并对反硝化、厌氧氨氧化菌群丰度变化和反硝化菌多样性进行分析。结果表明:淀粉浓度在150 mg·L~(-1)时,NO_2~--N和NO_3~--N的去除率最高,分别达到98.90%和99.86%;NH_4~+-N去除率在淀粉浓度为50 mg·L~(-1)时最高,为35.98%。随着淀粉浓度的增加,反硝化菌的丰度明显增加,但有机碳对厌氧氨氧化菌群具有抑制作用。当淀粉浓度为150 mg·L~(-1)时,反硝化菌的丰度最大、多样性水平最高、物种数目最大,反硝化细菌优势菌属为未分类的变形菌属和β-变形菌属。  相似文献   

3.
硫酸盐型厌氧氨氧化反应器的启动特性   总被引:1,自引:0,他引:1  
为了考察硫酸盐型厌氧氨氧化(S-ANAMMOX)的反应特性,采用有效容积为10 L的UASB反应器,接种亚硝酸盐型厌氧氨氧化(N-ANAMMOX)污泥,保持HRT 6 h不变,进水逐步以SO_4~(2-)-S代替NO_2~--N,启动S-ANAMMOX反应,研究了启动过程中基质和中间产物的变化情况。结果表明,历时116 d成功启动了S-ANAMMOX反应,反应器中NH_4~--N和SO_4~(2-)发生了同步去除,NH_4~--N和SO_4~(2-)的最大去除量分别为35.13和41.67 mg/L,最大去除速率分别为140.51和166.66mg/(L·d),NH_4~--N/SO_4~(2-)-S的转化比高达5.78。启动过程中未检测到S~(2-),有单质硫附着在颗粒污泥表面,在进水完全以SO_4~(2-)-S代替NO_2~--N后,未检测到NO_2~--N和NO_3~--N的生成,且出水p H低于进水。  相似文献   

4.
研究了上流式厌氧污泥床(UASB)反应器中厌氧氨氧化工艺的脱氮性能。接种体积比为1∶1的已驯化半年的厌氧氨氧化污泥混培物和城市污水处理厂回流污泥,采用提高基质浓度和缩短水力停留时间(HRT)2种方式提高UASB反应器的脱氮性能。结果发现,2种方式结合可在UASB反应器中获得较高的脱氮速率,经过280d后,最高总氮去除速率达到5.16kg/(m3·d)。缩短HRT并未对UASB反应器的脱氮效果产生不良影响,反而强化了脱氮性能。HRT由0.4d缩短至0.2d时,总氮去除速率由1.89kg/(m3·d)增加到3.66kg/(m3·d)。形成的颗粒污泥中的细菌的细胞形态不规则,内部有厌氧氨氧化体,为典型厌氧氨氧化菌结构特征。污泥的比基质转化速率为3.15kg/(kg·d)。经16SrDNA检测,污泥中的厌氧氨氧化菌属于"Candidatus Kuenenia"属。  相似文献   

5.
通过连续流实验研究了低浓度乙酸盐诱导下厌氧氨氧化颗粒污泥与异养反硝化菌的耦合脱氮性能,同时采用批试实验考察耦合系统中的氮素转化及去除途径。结果表明:采用低浓度乙酸盐对厌氧氨氧化颗粒污泥进行驯化,可以实现厌氧氨氧化与异养反硝化的高效耦合脱氮。系统在稳定时期,进水NH_4~+-N为30~40 mg·L~(-1)、NO_2~--N为45~55 mg·L~(-1)、CH_3COONa为60~80 mg·L~(-1),NH_4~+-N、NO_2~--N和TN的去除率分别为93.84%、94.62%和86.46%。耦合系统中的颗粒污泥同时存在厌氧氨氧化特性、硝化特性和反硝化特性。颗粒污泥表现出良好的厌氧氨氧化特性,总氮去除速率为12.46 mg·(g MLSS·h)~(-1)。系统中存在的硝化细菌可以消耗进水中的溶解氧从而缓解溶解氧对ANAMMOX菌的抑制,其中AOB活性高于NOB活性。系统中颗粒污泥对硝氮的反硝化作用强于对亚硝氮的反硝化作用,亚硝氮反硝化和硝氮反硝化的降解速率分别为1.89和3.59 mg·(g MLSS·h)~(-1)。当亚硝氮和硝氮同时存在时,反硝化菌优先将硝氮还原成亚硝氮。  相似文献   

6.
考察一次性降温和阶梯式降温对厌氧氨氧化反应器(ASBR)脱氮性能的影响。一次性降温方式(30℃降至15℃),阶梯式降温方式(30℃降至25℃,再降至20℃,最后降至15℃)。温度30℃时,NH_4~+-N和NO_2~--N的去除率分别为97.3%和98.5%,总氮去除速率为5.12 mg·(g·h)~(-1),?NO_2~--N/?NH_4~+-N为1.33,厌氧氨氧化活性(SAA)为0.139 g·(g·d)~(-1)。一次性降温至15℃时,NH_4~+-N和NO_2~--N的去除率分别降至47.9%和55.1%,总氮去除速率降至2.74 mg·(g·h)~(-1),?NO_2~--N/?NH_4~+-N升至1.51,SAA降至0.071 g·(g·d)~(-1)。阶梯式降温至15℃时,NH_4~+-N和NO_2~--N的去除率降至51.6%和61.2%,总氮去除速率降至3.22 mg·(g·h)~(-1),?NO_2~--N/?NH_4~+-N升至1.48,SAA降为0.083 g·(g·d)~(-1)。阶梯式降温方式脱氮性能更佳。  相似文献   

7.
为探究组合启动模式实现厌氧氨氧化反应器高效启动和稳定运行的可行性,分别采用接种短程硝化污泥结合提高进水基质(A)和接种厌氧氨氧化污泥结合缩短水力停留时间(B)2种组合方式启动改良型UASB厌氧氨氧化反应器,对反应器启动效果进行研究,并通过改变进水基质比和低温冲击探究启动成功后的反应器性能。结果表明:A反应器启动成功时的总氮去除负荷(NRR)为0.520 kg·(m~3·d)~(-1)、亚硝化单胞菌Nitrosomonas相对丰度大幅下降、主要厌氧氨氧化菌属由Candidatus Kuenenia转化为Candidatus Brocadia;而B反应器NRR达到1.950 kg·(m~3·d)~(-1)、Candidatus Kuenenia始终为优势菌属。随着进水基质比的提高,B反应器的NRR和上升幅度始终高于A反应器,具有更强的抗负荷能力。当温度由35℃下降至15℃时,A和B反应器污泥对基质的降解速率分别下降92.94%和81.38%;温度恢复至35℃后,A反应器污泥降解速率的回升率大于B反应器污泥。因此,接种厌氧氨氧化污泥和缩短水力停留时间的组合方式更有利于改良型UASB厌氧氨氧化反应器的高效启动和稳定运行。  相似文献   

8.
采用连续进水(feed-batch)方式的SBR在高氨氮负荷(1 kg·(m~3·d)~(-1))和双重抑制下实现了亚硝化系统的启动及稳定运行。采用荧光原位杂交技术(FISH)对活性污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)种群及数量变化进行测定。结果表明在温度(35±1)℃,进水氨氮浓度为1000mg·L~(-1)的条件下对NOB的抑制由游离亚硝酸(FNA)和DO的双重抑制转变为游离氨(FA)和DO的双重抑制,污泥亚硝酸盐氧化速率由28.16mg·(g·h)(以MLVSS计)降到0.3 mg·(g·h)~(-1)(以MLVSS计)以下,成功实现了高氨氮废水的稳定亚硝化。反应器出水NO_2~--N平均浓度为466.45 mg·L~(-1),NO_2~--N/NH_4~+-N接近1,NO_3~--N浓度低于20 mg·L~(-1),満足厌氧氨氧化(ANAMM0X)的进水基质要求。FISH结果表明,富集培养阶段AOB、NOB的优势种属由亚硝化单胞菌属(Nitrosomonas)及硝化螺旋菌属(Nitrospira)转变为Nitrosomonas及硝化杆菌属(Nitrobacter),抑制过程中NOB逐渐被淘汰最终硝化菌以Nitrosomonas为主,从微生物学角度佐证了亚硝化的稳定运行。  相似文献   

9.
基于厌氧氨氧化(Anammox)反应,采用13C同位素示踪法分析无机碳(IC)在工艺中的迁移转化路径,考查厌氧氨氧化工艺的固碳潜力及厌氧氨氧化菌相关的固碳机理;同时,结合微生物分子学等方法,通过比较反应前后NH_4~+-N、NO_2~--N、TN及IC的变化,分析推导出工艺的固碳机理。结果表明,在进水IC为10.70 mg左右时,系统平均固碳率在12.05%以上;经~(13)C标记处理后的Anammox污泥中~(13)C丰度值由1.07%增加至1.17%以上;Anammox污泥中cbbLR1基因拷贝数经氮素和IC影响后分别为5.79×10~8copies·g~(-1)和5.56×10~8copies·g~(-1),较处理前均有所增加,但变化不明显。进水中投加的IC参与了微生物体内的碳代谢;厌氧氨氧化菌存在遵循卡尔文循环固碳途径的功能基因。cbbLR1基因丰度与氮素浓度之间呈显著相关,与IC浓度之间的相关性不明显,说明该基因丰度对氮素的响应度比IC大。  相似文献   

10.
厌氧氨氧化菌接种污泥的选择培养过程研究   总被引:9,自引:2,他引:9  
厌氧氨氧化菌的2种不同接种污泥培养实验表明,厌氧消化污泥和好氧硝化污泥均可成功启动厌氧氨氧化过程.接种厌氧消化污泥比好氧硝化污泥培养的厌氧氨氧化菌启动快,但后者去除效果较好.接种好氧硝化污泥的反应器的厌氧氨氧化速率随着氨氮基质进水浓度的增加呈线性增加.进水氨氮浓度为280 mg/L时的氨氮平均去除率达91%;而接种厌氧消化污泥的相应氨氮平均去除率仅为52%.厌氧氨氧化过程以接种好氧硝化污泥来启动为宜.  相似文献   

11.
从广州市某污水处理厂缺氧段活性污泥中分离筛选出一株反硝化菌,以该菌株为研究对象,鉴定后对该菌株进行脱氮条件最优化实验在此基础上,分析其厌氧氨氧化能力。结果表明:在柠檬酸钠浓度为9 g·L~(-1),KNO_3浓度为1 g·L~(-1),溫度为35℃,pH为6.8的条件下,同时控制接种量为2.5%,即控制初始菌株浓度为10~7 mL~(-1)时,2 d后8号菌能达到87%的最佳NO_3~--N去除率;在厌氧氨氧化能力检测实验中,培养液中生化反应以反硝化作用为主,在第3·5天发现厌氧氨氧化反应,因此推测这株菌具有厌氧氨氧化反应能力。经初步鉴定,该菌株为苏云金芽孢杆菌(Bacillus thuringiensis)。  相似文献   

12.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

13.
以(NH4):SO4和NaNO2作为基质,富集厌氧氨氧化污泥.提取厌氧氨氧化污泥中细菌总DNA,纯化后使用特异性引物对厌氧氨氧化菌16S rDNA进行PCR扩增.扩增产物连接到pMD19-T载体,将载体转化到感受态细胞大肠杆菌JM109中,并对其16S rDNA基因进行测序.将测序结果进行系统发育树分析,发现富集得到的厌氧氨氧化菌与Candidatus Anammoxoglobus propionicus进化关系比较接近,是一种尚未见报道的厌氧氨氧化菌.  相似文献   

14.
有机物浓度对厌氧氨氧化脱氮性能影响试验研究   总被引:8,自引:2,他引:6  
通过间歇试验和连续试验研究了不同有机物浓度对厌氧氨氧化活性及脱氮性能的影响。间歇试验结果表明:自养条件下厌氧氨氧化菌的最大比反应速率为0.189 kg NH+4-N/(kg VSS·d);当氨氮和亚硝酸盐氮浓度为80 mg/L时,有机物的添加降低了厌氧氨氧化速率,当有机物浓度超过70 mg/L时,厌氧氨氧化菌的最大比反应速率降低到0.05 kg NH+4-N/(kg VSS·d)以下,是反硝化菌与厌氧氨氧化菌竞争亚硝酸盐产生了可逆抑制的结果。连续试验结果表明,高氮低碳源有机环境下厌氧氨氧化能稳定运行,并且比自养系统中总氮的去除率有所提高,当COD值为50 mg/L时,总氮去除率最大,平均值达96.59%,是反硝化菌和厌氧氨氧化菌共同脱氮的结果;当有机物浓度过高时,ANAMMOX对TN去除贡献率持续降低,反硝化不断得到强化,厌氧氨氧化运行不稳定。  相似文献   

15.
不同泥源对厌氧氨氧化反应器启动的影响   总被引:2,自引:1,他引:1  
李祥  黄勇  袁怡  张丽  朱莉 《环境工程学报》2012,6(7):2143-2148
采用2套上流式生物膜反应器,分别接种少量厌氧氨氧化污泥和大量硝化污泥,考察其对厌氧氨氧化反应器启动的影响。污泥接种入反应器后,测得接种厌氧氨氧化污泥的反应器(R1)内MLSS为0.22 g/L,另一个反应器(R2)MLSS为2.7 g/L。与直接接种厌氧氨氧化污泥相比,R1经过72 d的运行才显现出厌氧氨氧化特性。经过114 d的培养,前者氮去除速率由0.23 kg/(m3.d)提升到5.29 kg/(m3.d),总氮去除率大于89%;R2的氮去除速率由0.01 kg/(m3.d)提升到1.1 kg/(m3.d),总氮去除率大于84.6%。说明普通污泥启动需要一个较长的筛选过程,直接接种少量的厌氧氨氧化污泥比接种普通的污泥能够更快启动厌氧氨氧化反应器。  相似文献   

16.
通过在厌氧氨氧化塔式生物滤池内通入不同浓度的NO气体,探究NO对厌氧氨氧化反应的影响。当NO进气浓度升高至4 018 mg·m-3,NO-2-N进水浓度降低至20 mg·L~(-1)时,NO-N在电子受体中的比例升高至78.8%,NO去除速率最高达165.8 mg·d-1,证明厌氧氨氧化菌可以利用NO-N为电子受体进行厌氧氨氧化反应脱除NO。在这一过程中,TN去除负荷与不通入NO时相比下降了74.3%,NO-3-N生成∶NH+4-N消耗比从0.26下降至0.13。当NO进气浓度升高至8 036 mg·m-3时,NO对厌氧氨氧化菌产生了抑制,TN去除负荷和NO消耗速率分别下降了47.1%和69.6%,同时NO-2-N在电子受体中的比例升高至56.9%。实验证明,提高NO-2-N进水浓度能降低高浓度NO对厌氧氨氧化菌的抑制性。  相似文献   

17.
甲烷厌氧氧化古菌(ANMEs)是甲烷厌氧氧化过程中的重要微生物种群,对自然生境甲烷削减的意义重大,目前研究多集中在海洋系统,而关于ANMEs古菌在淡水系统的研究较少,其相关作用机理和工程应用的研究也尚处于初步阶段。在综合文献及前期研究基础上,介绍了ANMEs为主线的淡水系统甲烷厌氧氧化机制,分析了ANMEs的微生物学特性及地理分布,系统梳理了ANME-2d古菌针对不同电子受体(NO_3~-、Fe~(3+)、Cr~(6+)等)的电子转移体系研究进展;指出了ANME-2d及其他ANMEs可能根据环境改变而选择不同的电子受体,其相对应的电子转移机制也不同。通过对不同电子受体下的ANME-2d及其他ANMEs在淡水系统中的作用机制进行讨论分析,可为淡水系统甲烷厌氧氧化机制和碳循环过程提供理论依据,并为在工程中应用ANMEs实现同步污染物处理和甲烷削减提供新的思路。  相似文献   

18.
HRT对UASB厌氧反硝化脱氮的影响   总被引:1,自引:0,他引:1  
在反硝化脱氮的影响因素方面,研究多集中在碳源种类和碳氮比(C/N)2个方面,而对水力停留时间(HRT)的影响很少有报道。采用UASB作为厌氧反硝化反应器,进水NO_3~--N为50 mg·L~(-1),C/N比固定为1.5,分别以葡萄糖和乙酸钠作碳源,研究HRT对反硝化效果的影响。结果表明:当外加碳源为葡萄糖时,最佳HRT为6 h,此时NO_3~--N和TN的去除效果最好,去除率分别为79.5%和63.8%,出水NO_2~--N和NH_4~+-N浓度分别为4.69 mg·L~(-1)和2.22 mg·L~(-1);当外加碳源为乙酸钠时,最佳HRT为4 h,对应的NO_3~--N和TN去除率分别为99.0%和91.4%,出水NO_2~--N和NH_4~+-N浓度分别为3.08 mg·L~(-1)和0.47 mg·L~(-1)。HRT对反硝化效果有显著影响,且跟碳源种类有关。HRT会影响反硝化菌、反硝化异化还原成铵(DNRA)细菌和其他异养菌之间的平衡。  相似文献   

19.
以A~2/O-移动床生物膜反应器(MBBR)长期稳定运行的反硝化除磷污泥为研究对象,通过在厌氧段投加乙酸钠、缺氧段投加NO_3~--N,考察反硝化聚磷菌(DPAOs)在不同电子受体浓度(NO_3~--N:10、20、30、40、50 mg·L~(-1))下的脱氮除磷特性以及内碳源转化利用规律。实验结果表明:缺氧段电子受体不足导致吸磷受限,微生物由于处于饥饿状态出现糖原(GLY)降解,增加二次释磷的风险;而电子受体过量会抑制DPAOs的生物活性,降低内碳源的转化利用效率和同步脱氮除磷效果。当NO_3~--N浓度为30~40 mg·L~(-1)时,NO_3~--N和PO_4~(3-)-P去除率分别为92.28%~96.37%和99.39%~100%,聚-β-羟基链烷酸脂(poly-β-hydroxyalkanoate,PHAs)利用率为84.6%~86.2%,达到较好的同步脱氮除磷效果且实现了内碳源的高效利用。动力学参数对比结果表明,不同电子受体浓度下比吸磷速率(PUR)和比反硝化速率(DNR)在4.32~8.18 mg·(g·h)~(-1)、1.81~6.08 mg·(g·h)~(-1)(以VSS计)范围内波动,且NO_3~--N/PO_4~(3-)-P比值可间接反映DPAOs生物活性。  相似文献   

20.
厌氧氨氧化菌活性恢复及富集培养研究   总被引:5,自引:0,他引:5  
为了防止微生物流失,向厌氧序批式反应器(ASBR)中投加纤维膜(无纺布)作为厌氧氨氧化菌的载体,而使ASBR改为厌氧序批式生物膜反应器(ASBBR),研究了厌氧氨氧化菌活性恢复及富集培养过程中氮负荷提高对ASBBR的影响。经过23d的培养,厌氧氨氧化菌的活性恢复到原有的水平,然后提高TN容积负荷培养厌氧氨氧化菌。至132d时,反应器TN容积去除负荷达到了2.060kg/(m3·d)。整个过程中NH4+-N和NO2--N去除率一直保持在98%以上。当厌氧氨氧化菌活性恢复后,NH4+-N、NO2--N消耗量与NO3--N生成量之比最终趋于一定值(1.00∶1.30∶0.25)。在培养过程中,污泥颜色逐渐由灰色变为红棕色,最终变为浅红色。结果表明,反应器运行很稳定,NH4+-N、NO2--N出水浓度非常低,在短时间内能提高到较高的容积去除负荷。可见,ASBBR很适合厌氧氨氧化菌的富集培养。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号