首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究杭州市大气PM_(2.5)的污染特征,评估本地污染源和外来污染源对PM_(2.5)的影响,于2013年10月10日至11月2日对杭州市主城区两个不同高度的采样点进行采样,并定量分析大气PM_(2.5)中的化学成分。结果表明,采样期间20、84m高度的大气PM_(2.5)日均质量浓度分别为(80.5±28.9)、(80.3±29.3)μg/m3,不同高度的PM_(2.5)浓度及其化学成分无明显差异;PM_(2.5)主要成分质量分数按如下排序:SO_4~(2-)有机碳(OC)NO_3~-NH_4~+元素碳(EC);大气PM_(2.5)中二次粒子SO_4~(2-)、NO_3~-、NH_4~+平均质量浓度总和约为39.0μg/m3,二次转化是杭州市大气PM_(2.5)的主要来源,SO_4~(2-)、NO_3~-、NH_4~+贡献率为48%左右;20、84 m高度的大气PM_(2.5)中OC分别为(15.6±5.1)、(14.8±4.7)μg/m3,EC分别为(4.6±1.8)、(4.6±1.6)μg/m3,OC/EC(质量比)约为3.3。采样期间,杭州市大气PM_(2.5)在近地面垂直方向上分布较为均匀,表明杭州市大气PM_(2.5)受外来污染源的影响较小。而在本地污染源中,杭州市大气PM_(2.5)主要受到生物质燃烧、机动车尾气、燃煤和餐饮油烟等来源的影响,地面扬尘的作用不明显。  相似文献   

2.
采用ICS-1100型离子色谱仪在2014年6月到2015年6月期间对西安市大气中PM_(2.5)水溶性离子(NO_3~-、NH_4~+、SO_4~(2-)、NO_2~-、Cl~-、Na~+、Ca~(2+)、Mg~(2+)、K+)进行的实时监测,分析了全年PM_(2.5)中水溶性无机离子变化特征。结果显示:采样期间,西安市PM_(2.5)中NO_3~-、NH_4~+、SO_4~(2-)和Cl~-年均值占总离子的89.49%,且有明显月变化趋势,峰值出现在11和12月份,月浓度均值较往年同期降低,最高达到30.26、15.19、11.43和16.60μg·m~(-3)。Na~+、Ca~(2+)、Mg~(2+)和K~+浓度变化趋势与主离子不完全一致。NO_3~-均值大于SO_4~(2-)均值,表明PM_(2.5)中水溶性离子的主要贡献者为移动源。NO_3~-小时均值高于SO_4~(2-)小时均值,且在10:00和20:00处形成2个峰值。PM_(2.5)中NO_3~-与NO_2~-在0.05水平上显著相关,SO_4~(2-)与Cl~-的在0.01水平上极显著相关。  相似文献   

3.
比较了天津市雾霾天和非雾霾天PM_(2.5)中水溶性无机离子(SO_4~(2-)、NO_3~-、Cl~-、NH_4~+、Ca~(2+)、Na~+、Mg~(2+)、K~+)的污染特征,并对其来源进行分析。结果表明:(1)非雾霾天PM_(2.5)日均质量浓度为35~60μg/m~3,均值为43μg/m~3,雾霾天PM_(2.5)日均质量浓度为120~332μg/m~3,均值为242μg/m~3;雾霾天水溶性无机离子浓度均高于非雾霾天。(2)非雾霾天SO_4~(2-)主要来自大气中燃煤源的SO_2二次转化,NO_3~-主要来自一次污染源,雾霾天SO_4~(2-)、NO_3~-主要来自大气中燃煤源的SO_2、NO_2二次转化;非雾霾天NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3的形式存在,雾霾天NH_4~+主要以NH_4NO_3和NH_4HSO_4的形式存在;Na~+、K~+、Cl~-除了海盐来源外,煤和生物质的燃烧及其二次转化是主要贡献源;Ca~(2+)和Mg~(2+)主要来自建筑扬尘源和土壤扬尘源。(3)风速和相对湿度是雾霾天SO_4~(2-)、NO_3~-、NH_4~+浓度变化的重要原因。  相似文献   

4.
以北京西山森林公园为观测点,运用双通道颗粒物在线监测设备监测PM_(2.5)质量浓度,使用离子色谱仪测定样品中水溶性离子浓度,对北京西山油松林PM_(2.5)质量浓度及水溶性离子特征进行分析。结果表明:PM_(2.5)质量浓度为冬季(121.29±16.78)μg·m~(-3)春季(106.06±12.68)μg·m~(-3)秋季(88.01±17.44)μg·m~(-3)夏季(72.67±12.18)pg·m~(-3);SO-4~(2-)、Na~+、N0_3~-、HC0O~-是PM_(2.5)中最主要的水溶性离子成分,占所测水溶性离子浓度在四季分别为94.99%、72.66%,72.66%、89.52%,PM_(2.5)受SO_4~(2-)、Na~+、N0_3~_、NH_4~+影响较大基本呈正相关关系,SO_4~(2-)、Na~+、N0_3~-、NH_4~+、PM_(2.5)浓度季节变化一致,即在冬季最高,夏季最低春秋次之,且水溶性离子季节差异显著。SO_4~(2-)和N0_3~-、Na~+、NH_4~+的相关性极显著(r=0.85、0.80、0.92),NO_3~-和Na~+、NH_4~+之间关系也较大(r=0.87,0.66),Ca~(2+)和Mg~(2+)相关性极明显(r=0.98),其他水溶性离子间无明显的相关性,固定源和海洋源对水溶性离子贡献程度呈现出季节差异,秋季机动车尾气排放对空气硫和氮污染贡献达最高,春季最低,夏秋季海洋源对Cl~-影响明显。通过对森林植被区PM_(2.5)、水溶性离子特征及关系进行分析,更好地发挥植被的生态效益,提高空气质量。  相似文献   

5.
2015年12月3—21日对天津冬季 PM2.5进行了采样分析,重点分析了 Na~+、Mg~(2+)、NH_4~+ 、Ca~(2+)、K~+、Cl~-、SO_4~(2-) 、NO_3~-8种水溶性无机离子,结合风速、相对湿度、温度等气象资料,并利用主成分分析对水溶性无机离子来源进行了解析。结果表明,风速小、气温高和相对湿度大的天气条件以及冬季燃煤的人为原因是引起霾天的重要原因。采样期间PM_(2.5)平均质量浓度为104.22μg/m~3。霾天中,轻微霾天、轻度霾天、中度霾天、重度霾天的PM_(2.5)中总离子平均质量浓度分别为27.63、26.89、105.03、143.92μg/m~3,远高于非霾天的15.43μg/m~3。SO_4~(2-)是水溶性无机离子中含量最高的离子,约占总离子的1/3,SO_4~(2-)、NO_3~-、Cl~-和NH_4~+浓度之和占总离子的90%以上。随着霾程度加重,NH_4NO_3占比增加,(NH_4)_2SO_4占比减少。水溶性无机离子主要来源于海盐粒子、生物质燃烧、机动车尾气排放和燃煤等。  相似文献   

6.
2014年7月—2015年5月典型季节期间在重庆城区选择典型站点开展PM_(2.5)样品采集,并测量质量浓度,分析样品中水溶性离子、无机元素、OC和EC等组分,在此基础上对组分化学组成进行了质量重构。结果表明:观测期间PM_(2.5)年均值为76.4μg·m~(-3),浓度季节变化为冬季秋季春季夏季;组分方面,以二次转化为主的SO_4~(2-)、NH_4~+、NO_3~-和OC是PM_(2.5)组分中最主要成分,OC/EC比值4个季度均大于2,表明城区二次有机碳生成显著;硫氧化率(SOR)分析,气态污染物SO_2的二次转化效率较高,大气存在明显的二次转化过程。PM_(2.5)质量重构后主要组成为有机气溶胶(OM)、二次无机离子(SNA)和矿物尘,重庆城区应协同控制一次排放的颗粒物和气态污染物SO_2和NO_x,从而控制二次组分浓度。  相似文献   

7.
为研究西安城郊农村大气PM_(10)和PM_(2.5)中主要化学组分特征,于2014年12月至2015年10月在西安户县草堂寺采集颗粒物样品,分析了每组样品中的16种无机元素、8种水溶性离子、有机碳(OC)和元素碳(EC),对颗粒物和化学组分的浓度水平、时间变化特征进行了讨论。结果表明:(1)PM_(2.5)、PM_(10)年平均值分别为(79.78±59.12)、(118.09±79.27)μg/m~3。(2)PM_(2.5)及PM10中地壳元素浓度总体表现为春季高、秋季低;微量元素浓度表现为冬季高、夏季低。(3)PM_(2.5)和PM_(10)中SO_4~(2-)、NH_4~+、NO_3~-浓度总体表现为冬季秋季春季夏季。(4)冬、春季OC、EC明显高于夏、秋季;由OC/EC的最小值估算得到PM_(2.5)、PM_(10)中二次有机碳(SOC)年平均值分别为(7.90±8.89)、(8.55±8.50)μg/m~3,冬、春季SOC明显高于夏、秋季;秋、冬季OC、EC相关性较强,而春、夏季较弱。  相似文献   

8.
利用2013年邯郸市4个大气环境监测站连续1年的在线监测数据,并结合离线采样成分数据,对比分析了不同季节大气中PM_(2.5)及其主要成分的浓度水平和污染特征。结果表明,PM_(2.5)和PM10四季均存在不同程度的超标现象;污染物在4个站点之间的空间差异不太显著,邯郸市的污染为区域性污染。PM_(2.5)中水溶性无机离子和碳组分的季节变化均较为明显。SO_4~(2-)、NO_3~-和NH_4~+三者浓度之和占PM_(2.5)浓度的39.8%,占PM_(2.5)中总水溶性无机离子浓度的86.2%;四季均存在较强的光化学反应,但硫氧化率(SOR)和氮氧化率(NOR)呈现出不同的季节变化规律,与SO2-4和NO_3~-的来源和去除机制明显不同有关。秋、冬季有机碳(OC)和元素碳(EC)污染较为严重,总碳气溶胶(TCA)浓度分别占PM_(2.5)质量浓度的24.0%和32.9%;研究显示高浓度的OC较多来源于二次有机碳(SOC),高浓度碳易发生二次污染。进一步对PM_(2.5)中各组分进行来源分析得出燃煤、汽油车尾气、生物质燃烧、二次气溶胶和扬尘源对邯郸市PM_(2.5)贡献显著。  相似文献   

9.
为探讨焦作市冬季PM_(2.5)中水溶性离子特征及其来源,于2017年12月至2018年2月在焦作市区连续采集大气颗粒物PM_(2.5)样品,测定其中9种水溶性离子浓度。结果表明,焦作市冬季PM_(2.5)质量浓度为(99.11±73.26)μg/m~3,总水溶性离子质量浓度为(66.88±48.68)μg/m~3,其中NO_3~-、SO_4~(2-)、NH4_+是水溶性离子的主要成分,3者合计占总水溶性离子的81.5%(质量分数)。与清洁天相比,污染天NO_3~-、SO_4~(2-)、NH_4~+在PM_(2.5)中的占比显著增加,表明人为活动排放的二次污染物是焦作市冬季污染天PM_(2.5)的主要贡献成分;随着相对湿度的增加,大气中存在明显的气溶胶二次转化过程;焦作市大气PM_(2.5)移动源贡献大于固定源。焦作市PM_(2.5)中水溶性离子在清洁天主要受工业和生物质燃烧影响,而在污染天主要受气态污染物二次转化影响;后向轨迹聚类显示,采样期间焦作市主要受京津冀地区、西北地区气团影响。  相似文献   

10.
于2017年1—5月(取暖季)在西宁市区、郊区、农村设置采样点采集PM_(2.5)样品,利用离子色谱法测定PM_(2.5)中水溶性无机离子浓度。结果表明:取暖季西宁大气PM_(2.5)日均质量浓度为(55.98±52.66)μg/m~3,呈现明显的市区郊区农村的浓度变化特征。PM_(2.5)中水溶性离子质量浓度之和占PM_(2.5)质量浓度的36.3%,水溶性离子平均浓度大小为SO_4~(2-)NO_3~-NH_4~+Na~+Cl~-C_2O_4~(2-)Ca~(2+)F~-K~+Mg~(2+);取暖季西宁大气硫氧化率(SOR)和氮氧化率(NOR)平均值分别为0.21、0.13,表明SO_4~(2-)、NO_3~-主要由二次转化形成,PM_(2.5)中NO_3~-/SO_4~(2-)(质量浓度比)为0.75,阳离子与阴离子电荷摩尔数比值为0.89,表明燃煤是PM_(2.5)主要贡献源,颗粒物总体呈酸性。后向轨迹分析表明,重污染期间西宁PM_(2.5)及其中水溶性离子的浓度变化不仅受本地污染源的影响,也受外来气团输送的影响。  相似文献   

11.
为比较冬季城市和农村大气颗粒物浓度及化学组分等特征,本文分别采集分析了西安市区、安康农村冬季大气PM2.5颗粒物与PM0.1颗粒物。分析结果表明:两地大气中PM2.5日均浓度均超过国家二级标准(75μg·m~(-3)),空气质量不容乐观;其中农村样品中PM0.1颗粒物约占PM2.5颗粒物浓度的36.8%左右;所有颗粒物中有机碳远高于无机碳组分,而市区大气颗粒物中多环芳烃浓度显著高于农村浓度,说明城市空气中来源于机动车尾气的污染较为严重;从颗粒物粒径分布特征来看,粒径为0.300~0.374μm颗粒物具有最高数浓度和比表面积浓度,粒径为0.374~0.465μm的颗粒物具有最高质量浓度;由于农村污染源较为单一,安康样品颗粒物浓度受燃煤和油烟的影响较大。此外,由于受燃煤机动车排放影响,西安大气中PM0.1颗粒物中水溶性离子主要为NO_3~-与SO24,而安康大气PM0.1颗粒物中水溶性离子主要以SO_4~(2-)与Ca2+为主,PM2.5颗粒物中水溶性离子以NO_3~-、SO_4~(2-)和NH_4~+为主,这与农村环境中使用燃煤、农田灌溉、家畜喂养以及有机质降解等有关。  相似文献   

12.
为了解西安市燃煤锅炉排放颗粒物的组分情况,采用稀释通道采样,用滤膜采集了西安市3台链条炉排放颗粒物中的PM_(2.5)和PM_(10),并利用离子色谱仪(IC)、电感耦合等离子体质谱仪(ICP-MS)和碳分析仪等分析了其中的主要组分。实验结果表明,燃煤锅炉排放颗粒物中PM_(2.5)和PM_(10)的主要组分有SO_4~(2-)、NH_4~+、Cl~-、有机碳(OC)、元素碳(EC)、Al、Si。Si、Ca等地壳元素在PM_(10)中所占比例多于PM_(2.5),而NO_3~-、NH_4~+、OC等二次生成物在PM_(2.5)中所占比例多于PM_(10)。对比PM_(2.5)和PM_(10)组分可以发现,同种组分在不同燃煤锅炉排放的PM_(2.5)和PM_(10)中分布差异很大,这可能与除尘、脱硝等工艺密切相关。研究内容对西安市大气颗粒物源解析工作具有重要的参考价值,为西安市颗粒物源解析项目积累了一定的经验。  相似文献   

13.
为研究唐山市新冠肺炎防疫期间环境空气质量变化特征以及形成重污染的成因,分析了2020年1月1日至2月29日的PM_(10)、PM_(2.5)、SO_2、NO、NO_2、CO、PM_(2.5)组分(有机碳(OC)、元素碳(EC)、重金属等)和气象数据。结果表明,防疫期间空气质量整体改善,相比正常生产期间除CO浓度均值未变化,其他参数均呈下降趋势,其中NO、NO_2浓度降幅最大,分别降低73%和41%,受车流量减少影响显著。防疫期间的2月9—13日出现1次连续5天的重污染过程,相比正常生产期间PM_(10)、PM_(2.5)和CO浓度分别增长了69%、104%和95%,Fe浓度增加57%,呈钢铁型污染特征;该时段相对湿度和风速分别为80.2%、0.7m/s,为高湿低风速气象条件,二次无机盐(SNA,包括NH_4~+、NO_3~-、SO_4~(2-))在PM_(2.5)中占比为64%,比正常生产期间高31%,此次污染过程受本地工业大气污染物排放累积以及二次生成共同影响。  相似文献   

14.
于2014年春季在长春采集大气PM_(2.5)样品,对PM_(2.5)及其水溶性离子特征进行了分析。结果表明,2014年长春春季PM_(2.5)质量浓度为34.9~237.5μg/m3,平均质量浓度为125.6μg/m3。9种水溶性离子的总质量浓度为24.3~71.2μg/m~3,平均质量浓度为39.8μg/m~3,平均浓度大小表现为SO_4~(2-)Ca~(2+)Cl~-NH_4~+NO_3~-Na~+K~+Mg~(2+)F~-。后向轨迹表明,长春春季PM_(2.5)污染主要来源于内蒙古西北方向和长春东南部渤海、黄海地区。  相似文献   

15.
2014年4月22—29日在中国西北地区发生强沙尘天气期间,对银川市大气污染物(PM_(10)、PM_(2.5)、SO_2、NO_2、O_3)进行了监测,并重点分析了PM_(2.5)的化学组成变化特征。结果表明,沙尘天气发生前,PM_(10)、PM_(2.5)、SO_2和NO_2平均小时质量浓度分别为99.33、36.89、25.84、47.21μg/m~3;沙尘天气发生时,PM_(10)、PM_(2.5)、SO_2和NO_2平均小时质量浓度分别为1 121.43、209.19、6.13、18.42μg/m~3:说明此次沙尘传输经过地区大气较为清洁,随沙尘气溶胶传输的NO_2和SO_2较少。沙尘气溶胶由于带有大量的Ca~(2+)、Mg~(2+),使得PM_(2.5)碱性增强,PM_(2.5)中的硫酸盐和硝酸盐存在形式主要为NH_4HSO_4和NH_4NO_3。沙尘气溶胶除了对PM_(2.5)中来源于自然源的无机元素浓度有显著提升外,对于水溶性离子、碳成分等直接或间接来源于人为源的组分浓度也有较大的提升。Ti、Fe、Al、Ca、Si、Sr、Mg、Na、K、Ba、P可以认为基本来源于沙尘矿物粒子。此外,沙尘气溶胶还能促进大气SO_2、NO_2向二次硫酸盐、硝酸盐转化,尤其是硫酸盐。  相似文献   

16.
无锡市区大气污染物污染特征及影响因素研究   总被引:1,自引:0,他引:1  
利用2014年无锡市区的6种大气污染物浓度和气象因子等监测数据,研究了无锡市区各种大气污染物的污染特征及其影响因素。结果表明:(1)无锡市区PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度的季节变化特征为冬季最高,夏季最低;O_3浓度表现为夏季最高,冬季最低。就全年的综合情况而言,颗粒物污染,尤其是PM_(2.5)污染最严重。(2)PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度间两两呈正相关;PM_(2.5)、SO_2、NO_2、CO浓度均与O_3浓度呈负相关。(3)温度与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度呈正相关;相对湿度与PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度呈负相关,与CO浓度无相关性;风级与PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度呈负相关,与O_3浓度无相关性。降水有利于PM_(2.5)、PM_(10)、SO_2、NO_2、O_3浓度的降低,但对CO浓度影响不大。(4)无锡市区空气质量周末比工作日差。NO_2、SO_2浓度周末低于工作日,O_3浓度周末高于工作日,呈现明显的"周末效应";PM_(2.5)、CO浓度周末高于工作日,未出现"周末效应"。  相似文献   

17.
为探讨石家庄秋季PM_(2.5)中低分子量有机酸组成特征与来源,于2017年9—10月对石家庄PM_(2.5)进行采样并测定了3种低分子量有机酸(甲酸、乙酸、草酸)浓度,还测定了水溶性无机离子(Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)辅助讨论有机酸来源。结果发现,石家庄秋季PM_(2.5)中草酸浓度高于甲酸和乙酸,而甲酸和乙酸浓度接近,甲酸、乙酸和草酸的质量浓度分别为20~240、50~280、60~1 130ng/m~3。石家庄秋季PM_(2.5)中低分子量有机酸受自然源和人为源的混合影响,以人为源占主导,其中甲酸和乙酸的同源性较高。甲酸的可能来源为工业燃煤、交通汽车尾气排放、生物质燃烧、土壤和扬尘。乙酸的可能来源为工业燃煤、交通汽车尾气排放、生物质燃烧、生活污水、土壤和扬尘。草酸的可能来源为交通汽车尾气排放、大气氧化反应、生物质燃烧、土壤和扬尘、生活污水。  相似文献   

18.
以吕梁的小米秆、豆秆、玉米秆、树叶和草叶5种典型农林生物质为研究对象进行燃烧实验用武汉天虹TH450C型中流量大气综合采样仪对排放的烟尘进行采集。分析其碳组分(有机碳OC和元素碳EC)及水溶性无机离子,以期为颗粒物来源研究提供重要数据支撑。结果显示:5种农林生物质燃烧尘中,TC(total carbon)在颗粒物中所占比例介于62.37%~73.46%之间,碳组分是农林生物质燃烧尘的重要组成部分其中尤其以树叶燃烧尘中OC和EC的百分含量最大,分別达到39.78%和33.68%;生物质燃烧尘中碳组分的百分含量仅次于机动车尾气尘,但远大于煤烟尘、土壤风沙尘、建筑水泥尘和道路尘等源;OC/EC值介于1.15~1.26之间,该值可以初步用来作为判定农林生物质燃烧的ー个重要指标;K~+,Na~+,Ca~(2+)、Mg~(2+)、NH_4~+、F~-C1~-、S0_4~(2-)和NO_3_等9种水溶性无机离子之和在颗粒物中所占比例介于18.22%~24.12%之间,水溶性无机离子是农林生物质燃烧尘的重要组成部分;S0_4~(2-)、K~+、Cl~-、F~-是4种最主要的水溶性性无机离子;生物质燃烧尘中K~+主要以KCl的形式存在。  相似文献   

19.
利用颗粒物采样系统采集了3台循环流化床锅炉(分别为CFB(a)、CFB(b)和CFB(c))排放烟气中的颗粒物,对其水溶性离子进行了分析。结果表明:(1)CFB(a)、CFB(b)、CFB(c)的PM_(10)质量浓度分别为29.71、3.38、23.40mg/m~3,PM_(2.5)质量浓度分别为4.32、2.17、1.78mg/m~3,PM_1质量浓度分别为0.05、0.68、0.04mg/m~3;(2)3台CFB的PM_(10)中水溶性总离子质量分数基本相同,但CFB(b)的PM_(2.5)和PM_1中水溶性总离子质量分数高于CFB(a)和CFB(c);(3)CFB(a)和CFB(c)的颗粒物中以Ca~(2+)和SO_4~(2-)为特征离子,CFB(b)的颗粒物中以Na~+、Cl~-和SO_4~(2-)为特征离子;(4)3台CFB的颗粒物中水溶性离子大都呈现双模态粒径分布,包括超细粒子模态和粗粒子模态。  相似文献   

20.
广东大气超级监测站新粒子生成事件中,在新粒子快速增长后观测到明显的颗粒物缩小过程(即新粒子增长-缩小过程)。结合3~1 000nm颗粒物数谱分布、颗粒物化学组成和重要气态污染物的变化,具体分析这类新粒子生成事件出现颗粒物缩小过程的特性和成因。结果表明,秋季新粒子生成事件发生频率和新粒子增长-缩小过程出现频率均较高。新粒子增长速率为3.0~12.0nm/h,颗粒物缩小速率为2.2~10.9nm/h。新粒子增长过程中,颗粒有机物对PM_(2.5)浓度贡献最大;颗粒物缩小过程中,SO_4~(2-)对PM_(2.5)浓度贡献最大,且SO_4~(2-)、NH_4~+和元素碳对PM_(2.5)浓度的贡献有所提高;NO_3~-和颗粒有机物对PM_(2.5)浓度的贡献下降,且颗粒有机物中二次有机颗粒物对PM_(2.5)浓度贡献的下降幅度明显大于颗粒有机物对PM_(2.5)浓度贡献的下降幅度。经分析,固态NH4NO3分解和低挥发性有机物挥发是颗粒物缩小的重要直接原因,扩散条件改善和大气氧化性减弱可能是推动新粒子增长转为颗粒物缩小过程的重要条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号