首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thoron (220Rn), an isotope of the radon family, is produced in the earth’s crust at a rate comparable to that of common radon (222Rn). Thoron’s average activity concentration in soil gas and ground-level outside air is comparable to that of radon. Recent data from Europe and the United States indicate that in terms of the energy of the alpha particle decays of thoron’s progeny, its concentration in indoor air is significant, typically about half that due to radon progeny. This paper reviews current knowledge about thoron and its progeny in the outdoor and indoor environments and discusses issues involved in assessing whether or not it is a significant indoor pollutant.  相似文献   

2.
PM2.5 aerosols were sampled and atmospheric 222Rn (radon) was measured, at Hong Kong, China, over 3 years 2001–2003. The aerosol samples were analysed using accelerator-based Ion Beam Analysis (IBA) techniques to provide quantitative information on 21 of their major and minor elemental contributions. The radon concentration on aerosol sampling days was then used to classify the degree of land contact (high or low) experienced by air masses en route to the receptor site. It was found that elements known to originate from anthropogenic sources (e.g. Zn, K, Br, Pb and Black Carbon) were positively correlated with observed radon concentration. An eight-factor Positive Matrix Factorisation (PMF) analysis was performed on the data set, which resulted in elemental profiles (“fingerprints”) for eight potential sources and we identified source factors that were correlated with radon. The Potential Source Contribution Function technique was then used to identify the geographic regions most likely to have significantly contributed to the aerosol samples collected at the receptor site.  相似文献   

3.
This paper presents a comparative study of 222Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, 226Ra and moisture contents on 222Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01?×?10?3 and 1.03 Bq m?2 s?1, respectively. Significant positive linear correlations between 222Rn emanation rate and the 226Ra content of ore and tailings were observed. For normalised 226Ra content, the 222Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the 226Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.  相似文献   

4.
A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m-3 (4 pCi L-1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m-3) from the highly permeable soils (geometric mean permeability of 5 x 10(-11) m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h-1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.  相似文献   

5.
Combining a computational fluid dynamics (CFD) model and a multi-zonal model, a study was carried out on radon entry through the complex substructure of a house with a cellar. The uniqueness of the radon entry problem in this type of house was due to the involvement of two radon entry routes to two chambers: the cellar and the living area of the house. Soil gas carrying radon was driven through the two routes by two coupled disturbance pressures in the chambers. The effects of temperature differences were considered as another driving force for the radon entry. Examined in this study were the effects of the geometry of the substructure, air permeability of the soil, air-tightness of the cellar shell, and cellar ventilation on radon entry to both the cellar and the living area. The ground floor covering on top of the soil outside a cellar wall increased radon entry through this wall by about 68%, as radon built up to a very high level under the covering. The effect of cellar ventilation was found as follows: the cellar ventilation created a layer of airflow in the soil under the ground floor; the flow passed over a crack in the ground floor, the entry route to the living area, diluting the radon in the area. Hence, the soil gas entering the living area carried less radon. Cellar ventilation seems more effective in reducing radon entry to the living area in a more permeable soil and leaky cellar shell; a moderate cellar ventilation condition achieved 77% reduction in radon entry to the area. When permeability of these two materials was lower and soil radon content remained the same, the chances of radon entry was also lower; hence, the indoor radon level was lower and no radon control was needed. When such soil contains high radon concentration, other mitigation measures must be sought.  相似文献   

6.
A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m?3 (4 pCi L?1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m?3) from the highly permeable soils (geometric mean permeability of 5 × 10?11 m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h?1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.  相似文献   

7.
Although many remedial measures have been proposed for excessive Indoor 222Rn concentrations, their general effectiveness in given situations is not well established, In part because of the number and complexity of the factors that influence Indoor 222Rn. The strategy considered here is the use of basement ventilation to control upstairs Indoor radioactivity. A simple two-compartment model is described and used to derive ventilation rates that are needed to lower radon concentrations to specified levels. Previously published indoor radon measurements are used to derive the parameters needed for the calculations. The results of the two compartment model differ typically by a factor of two from the simpler, more often used one-compartment approximation.  相似文献   

8.
Burning natural gas in power plants may emit radon (222Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants’ emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m?3, averaging 34.5 ± 2.7 Bq m?3 around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m?3 around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m?3, were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m?3 compared to modeled enhancements of 0.08 Bq m?3. Measured enhancements around the WCSP averaged ?0.2 Bq m?3 compared to the modeled enhancements of 0.05 Bq m?3, which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants.

Implications: Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations originated from the plants’ emissions. There were elevated radon concentrations in the natural gas supply flowing into the power plants, but combustion dilution puts the concentration below EPA action levels coming out of the stack, so no hazardous levels were expected downwind. Power plant combustion of natural gas is not likely to pose a radiation health hazard unless very different gas radon concentrations or combustion dilution ratios are encountered.  相似文献   

9.
Enhanced gamma (Δγ) ray dose rates due to 222Rn progeny wet deposited on the ground surface measured at six monitoring sites in Japan were statistically analyzed to investigate their temporal and spatial variations. Variations of Δγ ray dose rates indicated significant regional differences between the sites on the Sea of Japan coast and those located inland and on the Pacific coast in Japan. At the sites located on the Sea of Japan coast, significant seasonal variation was evident, with higher dose rates in autumn and winter, and lower dose rates in summer. In contrast, however, no significant seasonal variation was observed at the inland and Pacific coast sites in Japan. The variation of Δγ ray dose rates was characterized by three major factors: climatologically changed air masses arriving in Japan, variation of 222Rn and its progeny concentrations in the air column, and the regional characteristics of precipitation. It is evident that the contribution from local 222Rn to Δγ ray dose rates was smaller than those from continental 222Rn. Meso-scale atmospheric disturbance, however, was suggested as an important process for extremely high Δγ ray dose rates, possibly by the accumulation of additional local 222Rn with stronger convergence. It is therefore possible that the variation of Δγ ray dose rates reflects the chemical climatology of 222Rn and its progeny.  相似文献   

10.
A one-dimensional flow and transport model was developed to describe the movement of two fluid phases, gas and water, within a porous medium and the transport of 226Ra and 222Rn within and between these two phases. Included in this model is the vegetative uptake of water and aqueous 226Ra and 222Rn that can be extracted from the soil via the transpiration stream. The mathematical model is formulated through a set of phase balance equations and a set of species balance equations. Mass exchange, sink terms and the dependence of physical properties upon phase composition couple the two sets of equations. Numerical solution of each set, with iteration between the sets, is carried out leading to a set-iterative compositional model. The Petrov-Galerkin finite element approach is used to allow for upstream weighting if required for a given simulation. Mass lumping improves solution convergence and stability behavior. The resulting numerical model was applied to four problems and was found to produce accurate, mass conservative solutions when compared to published experimental and numerical results and theoretical column experiments. Preliminary results suggest that the model can be used as an investigative tool to determine the feasibility of phytoremediating radium and radon-contaminated soil.  相似文献   

11.
Having a quantitative understanding of the carbon cycle in forests is of great importance for predicting global warming issues. Carbon dioxide production in soil is the largest CO2 source in forests, and exhibits large temporal and spatial variations. Continuous observation of soil CO2 flux at many sites over a forest is therefore necessary to obtain representative soil CO2 fluxes for the forest. In this study, a gradient method to measure soil CO2 flux indirectly from soil radon and CO2 measurements was theoretically modified to conveniently measure the soil CO2 flux from soil radon and CO2 concentrations measured at one soil depth. To experimentally test the modified method, a field observation was conducted continuously in a forest over a 31-day period.Since changes in the soil water content near the soil surface were small throughout the observation, a constant effective diffusivity for CO2 was assumed for the soil CO2 flux estimation. The soil CO2 flux was then calculated as the product of the effective diffusivity and the gradient of the soil CO2 concentration, each calculated from soil radon and CO2 concentrations. The estimated flux ranged from 1.9 to 5.8 μmol m?2 s?1, and, correlating well with the reference value, measured with a conventional ventilated-chamber method. We therefore conclude that the modified gradient method based on the measurement of soil CO2 and radon concentration at one depth is reliable, at least under conditions where the change in the soil water content is small.  相似文献   

12.
In order to predict indoor radiation levels due to radon daughters at low building ventilation and air leakage rates, differential equations governing the decay and venting of radon (Rn-222) and its daughters were used. A computer program based on the equations was written to predict radon and daughter concentrations, total potential alpha energy concentration and equilibrium factor. The program can account for time dependence of ventilation and emanation rates and is readily used by building designers.

Sample calculations using the program showed that potential alpha energy levels in tightened buildings can commonly reach about 0.01 working level (WL), a level more than twice as high as concentrations currently found in most houses.  相似文献   

13.
222Rn concentrations in the air in Nerja Cave (Spain) have been measured over 4 yr and at four sampling points. Concentrations average 168 Bq m-3 in the spring–summer when the temperature lapse rate provides a stable cave atmosphere. In the autumn–winter, the radon levels decrease to 48 Bq m-3. 222Rn flux has also been measured for soils in the cave, with an average value of 34 × 10-3 Bq m-2 s-1. The average natural flow rate in the spring–summer is about 0.70 m3 s-1 and the autumn–winter is approximately 3.6 m3 s-1 determined over 1992–1995. The radiation exposure levels for workers and tourists represent only a low percentage of the exposure guides for the general population.  相似文献   

14.
A combination of paired site, time series, and survey approaches were used to estimate the effect of land use change on mineral soil carbon (C), and to identify factors associated with variation. Land-uses compared included podocarp/hardwood forest, improved pasture, and pine plantation. Soil C was significantly related to soil pH that ranged between 3.9-5.9 (0-0.05 m), 3.6-6.0 (0.05-0.10 m), and 4.5-6.1 (0.10-0.50 m) in indigenous forest. Time series data obtained by periodically re-sampling soil (0-0.10 m) in permanent plots in a pine forest previously under pasture showed that mineral soil C decrease by approximately 4 Mg ha(-1) by the end of the first rotation. The time series data compared closely with mean results obtained at paired-site throughout New Zealand. Soil C concentration was highly variable in all land-uses, and the evidence suggests that chemical stabilisation of C occurred under acid conditions in native forest, through complexation with Al, and that effects persisted long after conversion of the native forest to other land-uses. The implications of these findings for the design of sampling protocols for soil C are discussed.  相似文献   

15.
In this paper, results on a PM10 daytime–nighttime measurement campaign carried out in Milan to study the evolution of PM10 concentration and composition in relation to atmospheric dispersion conditions are shown. To account for the evolution of atmospheric dispersion conditions, Radon hourly concentration measurements were performed. The significant correlation between PM10 and 222Rn daytime concentrations evidences the dominant role of atmospheric dispersion in determining the temporal variation of PM10 levels. Whenever 222Rn concentrations accumulate during the night (indicating the formation of nocturnal atmospheric stability conditions), PM10 concentrations are higher than those registered during the daytime before, despite a decrease in emissions from active sources. On the contrary, when 222Rn concentrations do not accumulate during night hours, PM10 levels are lower than those measured during the daytime before.As concerns the average elemental concentrations (in ng m−3), the nighttime–daytime variations are in the range −17% to +37%; during the night, soil-related elements (Al, Si, Ca, Ti) decrease while anthropogenic elements (Zn, Cu, Fe, Pb) increase.A case study concerning a ‘green’ Sunday (when traffic was forbidden from 8 a.m. to 8 p.m.) is also discussed. The difference of PM10 concentration and elemental composition registered during the ‘green’ Sunday daytime and the following nighttime, together with the information on atmospheric dilution power obtained by Radon measurements, allowed the characterisation of the traffic source elemental profile and increased the comprehension of the low effectiveness of some PM10 reduction strategies.  相似文献   

16.
Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites   总被引:17,自引:0,他引:17  
Evaluation of metal accumulation in soils and plants is of environmental importance due to their health effects on humans and other biota. Soil material and plant tissue were collected along transects in two heavily contaminated facilities, a Superfund site and a lead-acid battery dump, and analyzed for metal content. Soil lead (Pb), cadmium (Cd) and barium (Ba) concentrations for the Superfund site averaged 55,480, 8.5 and 132.3 mg/kg, respectively. Soil Pb occurred primarily in the carbonate, sulfide/residual and organic chemical fractions (41.6, 28.6 and 16.7%, respectively). Soil Pb, Cd and Ba concentrations for the dump site averaged 29,400, 3.9 and 1130 mg/kg, respectively. Soil Pb occurred mostly in the organic and carbonate fractions as 48.5 and 42.5%, respectively. Pb uptake in the two sites ranged from non-detectable (Agrostemma githago, Plantago rugelii, Alliaria officinalis shoots), to 1800 mg/kg (Agrostemma githago root). Cd uptake was maximal in Taraxacum officinale at 15.4 mg/kg (Superfund site). In the majority > or =65%) of the plants studied, root Pb and Cd content was higher than that for the shoots. Tissue Pb correlated slightly with exchangeable and soluble soil Pb; however, tissue Cd was poorly correlated with soil Cd species. None of the sampled plants accumulated measurable amounts of Ba. Those plants that removed most Pb and Cd were predominantly herbaceous species, some of which produce sufficient biomass to be practical for phytoremediation technologies. Growth chamber studies demonstrated the ability of T. officinale and Ambrosia artemisiifolia to successfully remove soil Pb and Cd during repeated croppings. Tissue Pb was correlated with exchangeable soil Pb at r(2)=0.68 in Ambrosia artemisiifolia.  相似文献   

17.
Soil and plants were sampled throughout winter and spring near a perennial stream traversing a restored mine site in a winter-rainy climate. Within 1m of an acidic reach of the stream, soil had pH 3-5 and 50-100 microg/g "bioavailable" copper (extractable with 0.01 M CaCl2). Soil 2-3 m from the stream had pH 5-8 and lower (less than 3 microg/g) bioavailable copper. "Oxide-bound" copper (extractable with 2N HCl) was 50-100 microg/g at most locations. Copper concentrations in the shoots of field-collected Bromus carinatus declined from 20 microg/g in winter to 2 microg/g in spring at all sampling sites. A similar temporal pattern was found in plants grown under controlled conditions. Thus B. carinatus has a developmental program for control of shoot copper concentration, causing a seasonally-varying pattern of copper phytoaccumulation over a large range of copper availability in the soil.  相似文献   

18.
An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.  相似文献   

19.
Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The development process started with an investigation into how sample pre-treatment could be used to obtain representative results from composite samples of heterogeneous soil stockpiles. Combining a large number of random increments allows stockpile heterogeneity to be fully represented in the sample. The resulting pre-treatment method was then combined with a theoretical approach to determine the necessary number of increments per composite sample. At the second stage, the sampling strategy was evaluated using computerised models of contaminant heterogeneity in soil stockpiles. The now theoretically based sampling strategy was implemented by the Netherlands Centre for Soil Treatment in 1995. It was applied to all types of soil stockpiles, ranging from clean to heavily contaminated, over a period of four years. This resulted in a database containing the analytical results of 2570 soil stockpiles. At the final stage these results were used for a thorough validation of the sampling strategy. It was concluded that the model approach has indeed resulted in a sampling strategy that achieves analytical results representative of the mean concentration of soil stockpiles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号