首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Sulfide precipitation by addition of iron salts is a widely used strategy for sulfide control in wastewater collection systems. Several parameters, such as pH, oxidation-reduction conditions, and reactant concentrations, are known to affect the feasibility of the method. However, their combined effects are difficult to predict for complex media, such as wastewater. This study investigates the effect of pH and reactant concentrations on the efficiency of iron sulfide precipitation in anaerobic municipal wastewater. Laboratory experiments showed that, when the pH was below 7, typically less than 40% of the added ferrous iron reacted by sulfide precipitation, although sulfide was in excess. However, when the pH was above 8, almost complete precipitation of all the added ferrous iron was observed. Varying the ferric-iron-to-ferrous-iron ratio demonstrated that improved efficiency could be achieved when using a 1:1 mixture of ferric chloride and ferrous sulfate.  相似文献   

2.
Cation distributions in twenty samples of acid-generating salts were compared to those in groundwater and storm runoff from a coal-refuse deposit in an effort to identify source-product relationships. Two mineral suites, one primarily composed of melanterite, rozenite and szomolnokite, and the other composed almost entirely of copiapite, were found to be most abundant at the study site. Comparisons of cation distributions in salts with those in water samples lead to an hypothesis that a copiapite-rich suite precipitated from vadose-zone ground-water that was brought to the surface by evaporative forcing. The copiapite-rich suite, which contained larger concentrations of aluminum, calcium and zinc that the melanterite-rozenite-szomolnokite mineral suite, was the primary source of solutes in captured storm runoff. An analysis of samples collected during a summer thunderstorm indicated that the chemistry of surface runoff varied little with time or with distance downstream. The cation distributions in samples of groundwater indicated that iron-rich pore waters observed near the surface in late autumn may have influenced water chemistry in the deeper portions of the unsaturated zone during the 1989 recharge season. The results of this study show that the solutes produced by the two observed salt suites can be distinguished by their mole percent iron and that the source-product relationships can explain observed variability in mine drainage chemistry at the study site.  相似文献   

3.
Kao CM  Chen CY  Chen SC  Chien HY  Chen YL 《Chemosphere》2008,70(8):1492-1499
In this study, a full-scale biosparging investigation was conducted at a petroleum-hydrocarbon spill site. Field results reveal that natural attenuation was the main cause of the decrease in major contaminants [benzene, toluene, ethylbenzene, and xylenes (BTEX)] concentrations in groundwater before the operation of biosparging system. Evidence of the occurrence of natural attenuation within the BTEX plume includes: (1) decrease of DO, nitrate, sulfate, and redox potential, (2) production of dissolved ferrous iron, sulfide, methane, and CO(2), (3) decreased BTEX concentrations along the transport path, (4) increased microbial populations, and (5) limited spreading of the BTEX plume. Field results also reveal that the operation of biosparging caused the shifting of anaerobic conditions inside the plume to aerobic conditions. This variation can be confirmed by the following field observations inside the plume due to the biosparging process: (1) increase in DO, redox potential, nitrate, and sulfate, (2) decrease dissolved ferrous iron, sulfide, and methane, (3) increased total cultivable heterotrophs, and (4) decreased total cultivable anaerobes as well as methanogens. Results of polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis reveal that three BTEX biodegraders (Candidauts magnetobacterium, Flavobacteriales bacterium, and Bacteroidetes bacterium) might exist at this site. Results show that more than 70% of BTEX has been removed through the biosparging system within a 10-month remedial period at an averaged groundwater temperature of 18 degrees C. This indicates that biosparging is a promising technology to remediate BTEX contaminated groundwater.  相似文献   

4.
Long-term performance is a key consideration for the granular iron permeable reactive barrier (PRB) technology because the economic benefit relies on sustainable operation for substantial periods of time. However, predictions on the long-term performance have been limited mainly because of the lack of reliable modeling tools. This study evaluated the predictive capability of a recently-developed reactive transport model at two field-scale PRBs, both having relatively high concentrations of dissolved carbonate in the native groundwater. The first site, with 8 years of available monitoring data, was a funnel-and-gate installation, with a low groundwater velocity through the gate (about 0.12 m d(-1)). The loss in iron reactivity caused by secondary mineral precipitation was small, maintaining relatively high removal rates for chlorinated organics. The simulated concentrations for most constituents in the groundwater were within the range of the monitoring data. The second site, with monitoring data available for 5 years, was a continuous wall PRB, designed for a groundwater velocity of 0.9 m d(-1). A comparison of measured and simulated aqueous concentrations suggested that the average groundwater velocity through the PRB could be lower than the design value by a factor of two or more. The distribution and amounts of carbonate minerals measured in core samples supported the decreased groundwater velocity used in the simulation. The generally good agreement between the simulated and measured aqueous and solid-phase data suggest that the model could be an effective tool for predicting long-term performance of granular iron PRBs, particularly in groundwater with high concentrations of carbonate.  相似文献   

5.
Natural analogues allow scientists to investigate biogeochemical processes relevant to radioactive waste disposal that occur on time scales longer than those that may be studied by time-limited laboratory experiments. The Palmottu U-Th deposit in Finland and the Bangombé natural nuclear reactor in Gabon involve the study of natural uranium, and are both considered natural analogues for subsurface radioactive waste disposal. The microbial population naturally present in groundwater may affect the redox conditions, and hence, the radionuclide solubility and migration. Therefore, groundwater samples from the two sites were investigated for microbial populations. The total numbers of cells ranged from 10(4) to 10(6) cells ml(-1). Iron-reducing bacteria (IRB) were the largest culturable microbial population in the Palmottu groundwater and were present at up to 1.3 x 10(5) cells ml(-1). Sulfate-reducing bacteria (SRB) and acetogens could also be cultured from the Palmottu groundwater. The numbers of IRB and SRB were largest in groundwater with the lowest uranium concentrations. Removal of dissolved U(VI) from solution was concomitant with the growth of IRB enrichment cultures and the reduction of iron. The redox buffer in the Palmottu groundwater consists of iron and uranium species, both of which are affected by IRB. IRB and aerobic heterotrophs were cultured from the Bangombé groundwater, where redox potentials are buffered by iron and organic carbon species. Microbial populations similar to those found at Palmottu and Bangombé are found throughout the Fennoscandian Shield, a potential host rock for subsurface radioactive waste disposal. These results confirm that microorganisms can be expected to play a role in stabilizing radioactive waste disposed of in the subsurface by lowering redox potential and immobilizing radionuclides.  相似文献   

6.
A value of simultaneously extracted metal to acid-volatile sulfide (SEM-AVS) can provide important information regarding metal availability in anaerobic sediment. SEM and AVS concentrations were obtained by the cold-acid purge-and-trap technique during spring and summer at six locations along the Mississippi River floodplain. SEM-AVS values and AVS concentrations did not vary significantly between locations during both seasons. AVS concentrations were significantly greater during summer than spring, resulting in significantly lower SEM-AVS values in summer. Total SEM concentrations did not significantly vary between seasons or specific locations. SEM-AVS values were greater than one at each location during both seasons. Sediment metal toxicity was predicted to be absent for benthic organisms along the river floodplain.  相似文献   

7.
Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 microg/L the average being 29 microg/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 microg/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater (< 15 m), arsenic concentrations are low likely due to the formation of insoluble ferrosoferric hydroxide complex. In deep groundwater (> 15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals.  相似文献   

8.
以沼泽红假单胞菌W1为研究对象,考察了厌氧条件下硫酸盐还原对活性黑5(Reactive Black 5,RB5)和直接黄11(Direct Yellow 11,DY11)生物脱色的影响。结果表明,硫酸盐本身对2种染料脱色无明显影响,而硫酸盐的还原产物———硫化物能通过氧化还原介体使2种染料化学脱色,其脱色过程能在3 min内迅速完成。在无介体加入的情况下,硫化物能够通过RB5自身产生的介体加速RB5的脱色;而对于不能产生氧化还原介体的DY11,硫化物对其脱色无明显影响。硫化物经染料氧化后形成的硫单质能够被菌株W1重新转化为硫化物,继续还原染料。  相似文献   

9.
Kobayashi N  Okamura H 《Chemosphere》2005,61(8):1198-1203
Interactive toxic effects between heavy metals were investigated using a sea urchin (Anthocidaris crassispina) bioassay. An effluent from an abandoned mine showed significant inhibitory effects on embryo development as well as producing specific malformations. The effects on the embryos were reproduced by synthetic polluted seawater consisting of eight metals (manganese, lead, cadmium, nickel, zinc, chromium, iron, and copper) at the concentrations detected in the mine effluent. This indicated that the heavy metals were responsible for the effects observed. Five heavy metals were ranked in decreasing order of toxicity as follows: Cu>Zn>Pb>Fe>Mn. Among these, zinc and manganese could cause malformation of the embryos. From bioassay results using 27 combinations of heavy metals, 16 combinations including zinc could produce specific malformations, such as radialized, exo-gastrulal, and spaceship Apollo-like gastrulal embryos. Zinc was one of the elements responsible for causing malformations and its effects were intensified by the presence of the other metals, such as manganese, lead, iron, and copper.  相似文献   

10.
We investigated whether nitrate-N (NO3(-)-N) concentrations of shallow groundwater (< 30 m from the land surface) in a region of intensive agriculture could be predicted on the basis of land use information, topsoil properties that affect the ability of topsoil to generate nitrate at a site, or the 'leaching risk' at different sites. Groundwater NO3(-)-N concentrations were collected biannually for 3 years at 88 sites within the Waikato Region of New Zealand. The land use was classed as either the predominant land use of the farm where the well or bore was located, or the dominant land use within a 500 m radius of the well or bore. Topsoil properties that affect the ability of soil to generate nitrate were also measured at all the sites, and a leaching risk assessment model 'DRASTIC' was used to assess the risk of NO3(-)-N leaching to groundwater at each site. The concentration of NO3(-)-N in shallow groundwater in the Waikato Region varied considerably, both temporally and spatially. Nine percent of sites surveyed had groundwater NO3(-)-N concentrations exceeding maximum allowable concentrations of 11.3 ppm recommended by the World Health Organisation for potable drinking water which is accepted as a public health standard in New Zealand. Over half (56%) of the sites had concentrations that exceeded 3 ppm, indicating effects of human activities (commonly referred to as a human activity value). Very few trends in NO3(-)-N concentration that could be attributed to land use were identified, although market garden sites had higher concentrations of NO3(-)-N in underlying groundwater than drystock/sheep sites when the land use within 500 m radius of a sampling site was used to define the land use. There was also some evidence that within a district, NO3(-)-N concentrations in groundwater increased as the proportion of area used for dairy farming increased. Compared to pastoral land, market gardens had lower total C and N, potentially mineralisable N and denitrifying enzyme assay. However, none of these soil properties were directly related to groundwater NO3(-)-N concentrations. Instead, the DRASTIC index (which ranks sites according to their risk of solute leaching) gave the best correlation with groundwater NO3(-)-N concentrations. The permeability of the vadose zone was the most important parameter. The three approaches used were all considered unsuitable for assessing nitrate concentrations of groundwater, although a best-fit combination of parameters measured was able to account for nearly half the variance in groundwater NO3(-)-N concentrations. We suggest that non-point source groundwater NO3(-)-N contamination in the region reflects the intensive agricultural practices, and that localised, site-specific, factors may affect NO3(-)-N concentrations in shallow groundwaters as much as the general land use in the surrounding area.  相似文献   

11.
The impact of an industrial effluent containing high loads of calcium, cadmium, lead chloride and sulphate, on a river ecosystem was assessed using a combination of an effluent toxicity test, an ambient toxicity test and an ecological survey. Only this combination of techniques made it possible to discriminate between the effects of the discharge and those of the background pollution. Each of the individual techniques detected essential effects which the other failed to reveal. With the physical and chemical measurements, important increases of several components were measured at all sampling sites downstream of the discharge. With the ecological survey, however, no large changes in water quality could be determined at the sampling sites, due to the high degree of pollution present upstream of the discharge. Reproduction of Daphnia magna, exposed to sublethal effluent dilutions, was followed over two generations. The offspring of the first generation were shown to have an increased sensitivity to the effluent, compared to the first generation that was born from previously unexposed mothers. Besides the toxicity of the effluent, the acute and chronic toxicity of its main component, CaCl(2), was also determined. The results of the CaCl(2)-tests and toxicity data from literature for the suspected toxicants were transformed to Toxic Units (TU). Using the sum of the TUs we investigated the possibility of predicting effluent toxicity to Daphnia magna. Effluent toxicity was under-estimated by calculating the sum of the TUs of the individual components. Dilution of the effluent to a level at which the measured toxicant concentrations comply with European regulations still showed significant effects on Daphnia reproduction.  相似文献   

12.
Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.  相似文献   

13.
Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe   总被引:3,自引:0,他引:3  
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.  相似文献   

14.
The equilibration and bioavailability of metals in laboratory-contaminated sediments have been investigated in order to provide better guidance on acceptable procedures for spiking sediments with metals for use in the development of whole-sediment toxicity tests. The equilibration rates of Cd, Cu, Ni and Zn spiked into three estuarine surface sediments with varying properties were investigated. Changes to sediment pH, redox potential, porewater and acid-soluble metals, acid-volatile sulfide and bacterial activity during equilibration, effects of temperature and disturbances following equilibration are reported. The addition of metals to sediments caused major decreases in pH and increases in redox potential as metals displaced iron(II) into the porewaters and added metals and iron (following oxidation) were hydrolyzed. The rates of equilibration of metals in porewaters varied considerably and were dependent on sediment and metal properties. For the oxic/sub-oxic sediments studied, metal-spikes of Cd, Cu, Ni and Zn appeared near equilibrium after 25-45, 10-15, 30-70 and 20-40 days, respectively. Acid-soluble metal concentrations decreased during the equilibration period indicating that the metals become more strongly associated with the sediments with time (less bioavailable). Bacterial activity was greatest in the sediment equilibrated at pH 7 and decreased following the addition of metals. During the equilibration period, bacterial activity increased in sediments equilibrated at pH 6, remained low in sediments at pH 8 and varied erratically in sediments at pH 7. Spiked sediments were shown to equilibrate more slowly at lower temperatures resulting in high porewater metal concentrations. Disturbances to equilibrated sediments because of sample manipulation caused significant iron(II) oxidation and losses of metals from porewaters. The importance of documenting spiking and equilibration procedures and carefully measuring and reporting sediment parameters is highlighted so that contaminant bioavailability and exposure pathways can be interpreted and organism sensitivity accurately determined. Recommendations are given for the preparation of metal-spiked sediments for toxicity testing purposes.  相似文献   

15.
Geochemical and stable carbon isotope data from closely spaced vertical intervals in a hydrocarbon-impacted aquifer were used to assess the relationship between biodegradation, mineral weathering, and enhanced bulk conductivity zones. The results show that depth zones of enhanced bulk conductivity in the contaminated aquifer had higher total dissolved solids (TDS) compared to background groundwater. The higher TDS in contaminated groundwater were due to elevated ion concentrations from enhanced mineral weathering. Depth intervals with higher concentrations of major cations overlapped with zones with higher total petroleum hydrocarbons, which were the same zones where reduction of nitrate, iron, manganese, sulfate, and methanogenesis was occurring. Hence, the zones of higher bulk conductivity may be explained by mineral weathering related to hydrocarbon biodegradation. Our results suggest that biodegradation of hydrocarbons may impart changes to the aquifer geochemistry that can be indirectly observed using geophysical techniques. We therefore argue for inclusion of geophysical investigations as part of natural attenuation assessment programs.  相似文献   

16.
介质阻挡放电净化硫化氢气体的实验研究   总被引:2,自引:1,他引:1  
采用介质阻挡放电等离子体技术净化恶臭气体硫化氢。考察了电压、频率、硫化氢初始浓度以及停留时间对硫化氢净化效果的影响。结果表明,介质阻挡放电可以有效消除硫化氢污染,硫化氢净化率随电压、频率以及停留时间的增加而升高,随硫化氢初始浓度增加而下降。当电压≥19kV,频率为300Hz,停留时间为1.56s,硫化氢初始质量浓度为30.1mg/m3时,硫化氢净化率接近100%。  相似文献   

17.
The main object of the study was the development of a long-term efficient and inexpensive in-situ immobilization technology for uranium (U) and arsenic (As) in smaller and decentralized groundwater discharges from abandoned mining processing sites. Therefore, corrosion of grey cast iron (gcFe) and nano-scale iron particles (naFe) as well as hydrogen stimulated autotrophic sulphate reduction (aSR) were investigated. Two column experiments with sulphate reducing bacterias (SRB) (biotic gcFe , biotic naFe) and one abiotic gcFe-column experiment were performed. In the biotic naFe column, no particle translocation was observed and a temporary but intensive naFe corrosion indicated by a decrease in E(h), a pH increase and H(2) evolution. Decreasing sulphate concentrations and (34)S enrichment in the column effluent indicated aSR. Fe(II) retention could be explained by siderite and consequently FeS precipitation by geochemical modeling (PhreeqC). U and As were completely immobilised within the biotic naFe column. In the biotic gcFe column, particle entrapment in open pore spaces resulted in a heterogeneous distribution of Fe-enriched zones and an increase in permeability due to preferential flow. However, Fe(II) concentrations in the effluent indicated a constant and lasting gcFe corrosion. An efficient immobilization was found for As, but not for U.  相似文献   

18.
Sulfonated naphthalene formaldehyde condensates (SNFC) and their monomeric analogues were used as superplasticizers for cement suspension injections at two tunnel construction sites that are in direct contact with groundwater. Because in one case the aquifer is an important drinking water resource, the behavior of SNFC in the groundwater was carefully investigated. Chemical analyses showed that SNFC leached to the groundwater in concentrations of up to 58 microg/l of total SNFC at a distance of about 60 m down-gradient from the construction site. Of the individual SNFC components, only monomers and oligomers with up to four units could be detected in the groundwater. Oligomers with more than four units did not leach from the cement paste. The leached oligomers were transported in the groundwater at different velocities, which can be explained by sorption experiments. Mass fluxes of SNFC used at the tunnel construction sites were evaluated. Most SNFC were immobilized in the cement, but 5% (w/w) of the applied SNFC were found to leach into the aquifer. This corresponds to a total amount of leached SNFC of approximately 100 kg, of which about 80% are biodegraded in the aquifer and 20% (20 kg) still remain in the groundwater.  相似文献   

19.
Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.  相似文献   

20.
从热镀锌厂的酸洗废水和锌灰中回收硫化锌,采用X射线能谱仪(EDS),X射线衍射仪(XRD),傅里叶红外光谱仪(FTIR)和场发射透射电镜(FETEM)表征样品ZnS性质,电感耦合等离子发射体(ICP-OES)分析上清液性质,并研究该反应动力学过程。EDS和ICP分析表明,样品ZnS纯度达到85.45%,其上清液含有高浓度铁,含量为2 g/L,可用于制备复合亚铁絮凝剂,而其他重金属离子浓度均低于电镀废水排放标准。XRD分析表明,样品ZnS是立方晶型,调节pH和采用滴加方式能有效改善样品ZnS的晶型。采用Scherrer公式计算晶体粒径,结果表明,晶粒大小在3~6 nm之间。FTIR分析表明,样品ZnS呈现良好的红外透明性,且温度、pH和滴加方式对样品的红外透光性基本没有影响。FETEM结合XRD图表明,该纳米晶呈片状,近似为球形,呈多层叠加,分散性不明显,有团聚现象。动力学实验表明,逆一级动力学方程适合描述硫化沉淀的反应动力学过程,活化能为39.04 kJ/mol,沉淀过程受化学反应和扩散联合控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号