首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A C Hatch  G A Burton 《Chemosphere》1999,39(6):1001-1017
Several field and laboratory assays were employed below an urban storm sewer outfall to define the relationship between stormwater runoff and contaminant effects. Specifically, two bioassays that measure feeding rate as a toxicological endpoint were employed in the field and in the laboratory, along with bioassays measuring survival and growth of test organisms. In 7 to 10 d in situ exposures, amphipod leaf disc processing, growth and survival were monitored. Different exposure scenarios were investigated by varying the mesh size (74 microns or 250 microns mesh) and method of deployment (water column, sediment surface, or containing sediment) of in situ exposure chambers. Hyalella azteca, Daphnia magna, and Pimephales promelas survival were monitored in 48 h in situ exposures. Feeding inhibition was investigated via enzyme inhibition of H. azteca and D. magna and via leaf disc processing measurements of the detritivore H. azteca. Additionally, we investigated the extent of phototoxicity at this site via field exposures in sun and shade and laboratory exposures with and without UV light. The measurement of detritivore leaf disc processing, and thus its usefulness as an endpoint, was hindered by individual variability in the amount of leaf consumed and by leaf weight gain during the summer field exposures. For D. magna, enzyme inhibition measured in a laboratory exposure did not reveal the toxicity observed in field exposures. For H. azteca, enzyme inhibition measured in the laboratory indicated toxicity similar to that observed in short term chronic in situ exposures. Enzyme inhibition also did not detect differences in toxicity due to variations in flow conditions. There were no statistically significant effects of any exposure on P. promelas survival or H. azteca growth, and there were no statistically significant effects due to mesh size or sun exposure. Survival of H. azteca was the most sensitive and the least variable endpoint. Effects on survival were noted in the same treatments over short-term chronic exposures in the laboratory and in situ. Significant differences in survival were noted due to the method of deployment under low flow conditions. In situ chambers containing sediment resulted in greater mortality in the 10 d low flow in situ experiments. Under high flow conditions, significant reductions in survival and leaf disc processing were noted under all methods of deployment at the two impacted sites over a 7 d exposure. Also under high flow conditions, significantly greater mortality of H. azteca was reported at the downstream field site when sediment was included in the chamber at deployment. These results suggest that significant toxicity at this site is due to accumulation of contaminants in the sediment and the mobilization of these contaminants during a storm event. In situ exposures detected toxicity not observed in laboratory exposures. These results suggest that a combination of laboratory and field bioassays is most useful in defining field effects.  相似文献   

2.
An in situ toxicity and bioaccumulation assessment approach is described to assess stressor exposure and effects in surface waters (low and high flow), the sediment-water interface, surficial sediments and pore waters (including groundwater upwellings). This approach can be used for exposing species, representing major functional and taxonomic groups. Pimephales promelas, Daphnia magna, Ceriodaphnia dubia, Hyalella azteca, Hyalella sp., Chironomus tentans, Lumbriculus variegatus, Hydra attenuatta, Hexagenia sp. and Baetis tibialis were successfully used to measure effects on survival, growth, feeding, and/or uptake. Stressors identified included chemical toxicants, suspended solids, photo-induced toxicity, indigenous predators, and flow. Responses varied between laboratory and in situ exposures in many cases and were attributed to differing exposure dynamics and sample-processing artifacts. These in situ exposure approaches provide unique assessment information that is complementary to traditional laboratory-based toxicity and bioaccumulation testing and reduce the uncertainties of extrapolating from the laboratory to field responses.  相似文献   

3.
The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts.  相似文献   

4.
Acute and chronic toxicity tests with propanil were conducted on Daphnia magna. The 24 and 48 h LC50 were 43.74 and 5.01 mg/l respectively. Chronic toxicity tests were carried out using sublethal propanil concentrations (0.07, 0.10, 0.21 and 0.55 mg/l) during 21 days. The effect of propanil on survival, reproduction and growth of D. magna organisms was monitored. The parameters used to evaluate herbicide effect on reproduction were: mean total young ones per female, mean brood size, time to first reproduction, mean number broods per female and intrinsic rate of natural increase (r). Survival and growth (body length) were also determined after 21 days of exposure to the herbicide. Reproduction was significantly reduced when propanil concentration increased in the medium. The intrinsic rate of natural increase (r) decreased with increasing concentrations of propanil especially in those animals exposed to 0.55 mg/l. However, growth as well as survival of the exposed organisms only decreased in daphnids exposed to the highest propanil concentration tested. The maximum acceptable toxicant concentration (MATC) was calculated for D. magna exposed to the herbicide using as parameter of evaluation the intrinsic rate of natural increase (r). The interpolation of these results gave MATC values of 0.08 mg/l herbicide. We have derived the EC50 values for some selected parameters on D. magna exposed to propanil. EC50 values indicated that reproductive parameters were very sensitive of the effect of propanil on daphnids. Finally, the daphnids were exposed to the same sublethal herbicide concentrations as in the chronic study and the effect of the toxicant on filtration and ingestion rates was determined. Feeding rates of D. magna declined with increasing propanil concentrations. The effective propanil concentrations at which feeding rates were reduced to 50% of that in controls (EC50) were also calculated.  相似文献   

5.
Fluoxetine is a serotonin re-uptake inhibitor, generally used as an antidepressant. It is suspected to provoke substantial effects in the aquatic environment. This study reports the effects of fluoxetine on the life cycle of four invertebrate species, Daphnia magna, Hyalella azteca and the snail Potamopyrgus antipodarum exposed to fluoxetine spiked-water and the midge Chironomus riparius exposed to fluoxetine-spiked sediments. For D. magna, a multi-generational study was performed with exposition of newborns from exposed organisms. Effects of fluoxetine could be found at low measured concentrations (around 10mugl(-1)), especially for parthenogenetic reproduction of D. magna and P. antipodarum. For daphnids, newborns length was impacted by fluoxetine and the second generation of exposed individuals showed much more pronounced effects than the first one, with a NOEC of 8.9mugl(-1). For P. antipodarum, significant decrease of reproduction was found for concentrations around 10mugl(-1). In contrast, we found no effect on the reproduction of H. azteca but a significant effect on growth, which resulted in a NOEC of 33mugl(-1), expressed in nominal concentration. No effect on C. riparius could be found for measured concentrations up to 59.5mgkg(-1). General mechanistic energy-based models showed poor relevance for data analysis, which suggests that fluoxetine targets specific mechanisms of reproduction.  相似文献   

6.
Flaherty CM  Dodson SI 《Chemosphere》2005,61(2):200-207
Pharmaceuticals have been globally detected in surface waters, and the ecological impacts of these biologically-active, ubiquitous chemicals are largely unknown. To evaluate the aquatic toxicity of individual pharmaceuticals and mixtures, we performed single species laboratory toxicity tests with Daphnia magna, a common freshwater zooplankton. We conducted acute (6-day) and chronic (30-day) exposure pharmaceutical bioassays and evaluated survivorship and morphology of adults and neonates, adult length, resting egg production, brood size (fecundity), and the proportion of male broods produced (sex ratio). In general, exposure to a single pharmaceutical in the 1-100 microg/l range yielded no apparent effects on the normal life processes of Daphnia. However, chronic fluoxetine exposure (36 microg/l) significantly increased Daphnia fecundity, and acute clofibric acid exposure (10 microg/l) significantly increased sex ratio. A mixture of fluoxetine (36 microg/l) and clofibric acid (100 microg/l) caused significant mortality; the same fluoxetine concentration mixed with 10 microg/l clofibric acid resulted in significant deformities, including malformed carapaces and swimming setae. Mixtures of three to five antibiotics (total antibiotic concentration 30-500 microg/l) elicited changes in Daphnia sex ratio. We conclude: (1) individual and mixtures of pharmaceuticals affect normal development and reproduction of Daphnia magna, (2) aquatic toxicity of pharmaceutical mixtures can be unpredictable and complex compared to individual pharmaceutical effects, and (3) timing and duration of pharmaceutical exposure influence aquatic toxicity.  相似文献   

7.
Agricultural ditches primarily serve to remove and store excess water associated with irrigation and storm events. The ability of these ecosystems to mitigate potential contaminants is not well understood. Five sites along a 650-m agricultural ditch located in the Mississippi Delta Management Systems Evaluation Area (MDMSEA) were used to measure fate and effects of an esfenvalerate (insecticide) exposure. Following a 0.64-cm simulated storm event, samples were collected from water and sediments and analyzed spatially from five sites and temporally from 0.5 h to 56 d. Results of aqueous toxicity bioassays indicated that lethality progressed downstream throughout all sampling intervals, while sediment toxicity bioassays only elicited biological responses at the point of pesticide application to the ditch (0 m). Significant reductions in survival of Ceriodaphnia dubia and Pimephales promelas in water were measured at the 0-, 20-, and 80-m sites following application. Ten-day solid phase sediment testing of Chironomus tentans indicated persistent toxicity only at the point of application (0 m) and throughout 56 d (mean=14.4% survival). No lethality or significant reduction in midge growth was measured for remaining downstream sites. These measurements were used to evaluate the potential of agricultural ditches to reduce potential deleterious effects of contaminants in agricultural drainage systems that precede receiving streams.  相似文献   

8.
Enantioselectivity in the toxicity and degradation of the herbicide dichlorprop-methyl (2,4-DCPPM) in algal cultures was studied. Enantioselectivity was clearly observed in the toxicity of racemic 2,4-DCPPM and its two enantiomers. R-2,4-DCPPM showed low toxicity to Chlorella pyrenoidosa and Chlorella vulgaris, but higher toxicity to Scenedesmus obliquus. The observed toxicity was ranked: R-2,4-DCPPM > S-2,4-DCPPM ? Rac-2,4-DCPPM; the toxicity of R-2,4-DCPPM was about 8-fold higher than that of Rac-2,4-DCPPM. Additionally, 2,4-DCPPM was quickly degraded, in the initial 12 h, and different algae cultures had different enantioselectivity for the 2,4-DCPPM enantiomers. There was no significant enantioselectivity for 2,4-DCPPM in Chlorella vulgaris in the initial 7 h. However, racemic 2,4-DCPPM was degraded by Scenedesmus obliquus quickly, in the initial 4 h, much quicker, in fact, than the S- or R-enantiomers (racemate > R- > S-), indicating that the herbicide 2,4-DCPPM was absorbed enantioselectively by Scenedesmus obliquus. The rapid formation of 2,4-DCPP suggested that 2,4-DCPPM adsorbed by algal cells was catalytically hydrolyzed to the free acid, a toxic metabolite. The production rates of 2,4-DCPP were as follows: Scenedesmus obliquus > Chlorella pyrenoidosa > Chlorella vulgaris, consistent with the degradability of 2,4-DCPPM. Scenedesmus obliquus had quick, but different, degradative and uptake abilities for R-, S-, and Rac-2,4-DCPPM. The R- and S- enantiomers were not hydrolyzed in the first 12 h, while both enantiomers were hydrolyzed slowly after that. These results indicate that some physical and chemical properties of compounds are of importance in determining their enantioselective toxicity and degradation. The ester and its metabolite likely played an important role in enantioselective toxicity to the three algae.  相似文献   

9.
Enantioselectivity in the toxicity and degradation of the herbicide dichlorprop-methyl (2,4-DCPPM) in algal cultures was studied. Enantioselectivity was clearly observed in the toxicity of racemic 2,4-DCPPM and its two enantiomers. R-2,4-DCPPM showed low toxicity to Chlorella pyrenoidosa and Chlorella vulgaris, but higher toxicity to Scenedesmus obliquus. The observed toxicity was ranked: R-2,4-DCPPM>S-2,4-DCPPM>Rac-2,4-DCPPM; the toxicity of R-2,4-DCPPM was about 8-fold higher than that of Rac-2,4-DCPPM. Additionally, 2,4-DCPPM was quickly degraded, in the initial 12 h, and different algae cultures had different enantioselectivity for the 2,4-DCPPM enantiomers. There was no significant enantioselectivity for 2,4-DCPPM in Chlorella vulgaris in the initial 7 h. However, racemic 2,4-DCPPM was degraded by Scenedesmus obliquus quickly, in the initial 4 h, much quicker, in fact, than the S- or R-enantiomers (racemate>R->S-), indicating that the herbicide 2,4-DCPPM was absorbed enantioselectively by Scenedesmus obliquus. The rapid formation of 2,4-DCPP suggested that 2,4-DCPPM adsorbed by algal cells was catalytically hydrolyzed to the free acid, a toxic metabolite. The production rates of 2,4-DCPP were as follows: Scenedesmus obliquus>Chlorella pyrenoidosa>Chlorella vulgaris, consistent with the degradability of 2,4-DCPPM. Scenedesmus obliquus had quick, but different, degradative and uptake abilities for R-, S-, and Rac-2,4-DCPPM. The R- and S- enantiomers were not hydrolyzed in the first 12 h, while both enantiomers were hydrolyzed slowly after that. These results indicate that some physical and chemical properties of compounds are of importance in determining their enantioselective toxicity and degradation. The ester and its metabolite likely played an important role in enantioselective toxicity to the three algae.  相似文献   

10.
Although widely used for the treatment of endo- and ectoparasites in livestock and pets, very few data on chronic effects on aquatic organisms are available for the parasiticide ivermectin. In the present study, toxicity of ivermectin to two freshwater organisms, the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata was investigated. For D. magna, a mean LC(50) 48 h of 5.7 ngl(-1) was derived from 10 acute tests. Chronic toxicity of ivermectin to D. magna was extremely high: with 0.001 and 0.0003 ngl(-1), respectively, nominal LOEC and NOEC based on growth and reproduction were far below the analytical limit of detection for this compound. P. subcapitata was considerably less sensitive to ivermectin than D. magna. For both growth rate and yield, EC(50) was >4,000 microgl(-1), LOEC was 1,250 microgl(-1) and NOEC 391microgl(-1). In view of the high toxicity to D. magna, the use of ivermectin might pose a risk to local aquatic ecosystems. Further studies should be carried out to investigate the effects of ivermectin and its degradation products on pelagic and benthic freshwater invertebrates.  相似文献   

11.
Ecological risk assessments of pharmaceuticals are currently difficult because little-to-no aquatic hazard and exposure information exists in the peer-reviewed literature for most therapeutics. Recently several studies have identified fluoxetine, a widely prescribed antidepressant, in municipal effluents. To evaluate the potential aquatic toxicity of fluoxetine, single species laboratory toxicity tests were performed to assess hazard to aquatic biota. Average LC(50) values for Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas were 0.756 (234 microg/l), 2.65 (820 microg/l), and 2.28 microM (705 microg/l), respectively. Pseudokirchneriella subcapitata growth and C. dubia fecundity were decreased by 0.044 (14 microg/l) and 0.72 microM (223 microg/l) fluoxetine treatments, respectively. Oryias latipes survival was not affected by fluoxteine exposure up to a concentration of 28.9 microM (8.9 mg/l). An LC(50) of 15.2 mg/kg was estimated for Chironomus tentans. Hyalella azteca survival was not affected up to 43 mg/kg fluoxetine sediment exposure. Growth lowest observed effect concentrations for C. tentans and H. azteca were 1.3 and 5.6 mg/kg, respectively. Our findings indicate that lowest measured fluoxetine effect levels are an order of magnitude higher than highest reported municipal effluent concentrations.  相似文献   

12.
Consumption inhibition in natural populations, namely due to contaminants, may have direct and immediate effects on ecosystems, by hampering ecosystem key functions (e.g., organic matter decomposition, grazing), long before effects at the individual level (e.g., reproduction, growth, emergence) have time-delayed consequences at successively higher levels of biological organization. The present study aimed at developing a cost-effective (short and easy) toxicity test based on the postexposure feeding of a freshwater amphipod present in the Iberian Peninsula and at evaluating the immediate impact of contamination on the population-level consumption rate. First, methodologies to quantify postexposure feeding were developed and optimized, the most important criterion being a feeding period as short as possible to minimize physiological recovery from the contaminant exposure. Second, the sensitivities of 48-h postexposure feeding and 48-h lethality tests were compared, using a reference chemical - copper. Third, the latter responses were integrated in a single parameter, the median population consumption inhibitory concentration. When Echinogammarus meridionalis males were fed on 100 defrosted Artemia franciscananauplii during 30 min in darkness at 19-21 °C, the eaten proportion was approximately 80%, without truncated data distributions. The 48-h median effective copper concentration for postexposure feeding was approximately two times lower than the 48-h LC50 - 91 versus 198 μg L−1, respectively. Two techniques were used to quantify the median population consumption inhibitory copper concentration, both leading to similar values (75 and 68 μg L−1). In conclusion, when contaminant concentrations elicit both lethality and feeding depression, the integration of both responses can provide an ecologically relevant evaluation on the potency of a contaminant to immediately disrupt ecosystem functioning.  相似文献   

13.
ABSTRACT

The degradation dynamics and terminal residues of dufulin enantiomers were investigated in two typical corn plants. A convenient and precise chiral method by high-performance liquid chromatography coupled with tandem triple quadrupole mass spectrometry (HPLC/MS/MS) using a Chiralpak IC column was developed and validated for measuring dufulin enantiomers in corn plants and corn. The two enantiomers of dufulin quickly dissipated in the corn plant, and no noticeable stereoselectivity was observed during degradation or in the final residues. After 30% rac-dufulin wettable powder with a 1- to 1.5-fold dose of the recommended value was sprayed two to three times on corn plants, the residue levels of S-(+)-dufulin and R-(-)-dufulin in corn from both sites were lower than or equal to 0.0520 mg kg–1 on days 7, 14 and 21 after the last application. The dietary risk assessment indicated that dufulin did not exhibit obvious dietary health risks in corn samples when good agricultural practices were implemented. The findings from this study may be used to better understand the chiral profiles of dufulin in the environment and the effect of dufulin residues in corn on health.  相似文献   

14.
Fipronil is a phenylpyrazole insecticide used in agricultural and domestic settings for controlling various insect pests in crops, lawns, and residential structures. Fipronil is chiral; however, it is released into the environment as a racemic mixture of two enantiomers. In this study, the acute toxicity of the (S,+) and (R,-) enantiomers and the racemic mixture of fipronil were assessed using Simulium vittatum IS-7 (black fly), Xenopus laevis (African clawed frog), Procambarus clarkii (crayfish), Palaemonetes pugio (grass shrimp), Mercenaria mercenaria (hardshell clam), and Dunaliella tertiolecta (phytoplankton). Results showed that S. vittatum IS-7 was the most sensitive freshwater species to the racemic mixture of fipronil (LC50 = 0.65 microg/L) while P. pugio was the most sensitive marine species (LC50 = 0.32 microg/L). Procambarus clarkii were significantly more sensitive to the (S,+) enantiomer while larval P. pugio were significantly more sensitive to the (R,-) enantiomer. Enantioselective toxicity was not observed in the other organisms tested. Increased mortality and minimal recovery was observed in all species tested for recovery from fipronil exposure. These results indicate that the most toxic isomer of fipronil is organism-specific and that enantioselective toxicity may be more common in crustaceans than in other aquatic organisms.  相似文献   

15.
Chronic toxicity studies were conducted with an algae (Nannochloris oculata) and the cladoceran (Daphnia magna) to determine their relative sensitivities to the thiocarbamate herbicide thiobencarb (S-4-chlorobenzyl diethylthiocarbamate). Most of the algal populations were initially affected by exposure to the herbicide. Thiobencarb concentrations higher than 0.5 mg/L significantly reduced algal densities after 24-h exposure. The 24-h static EC50 in D. magna was 3.01 mg/L. The sublethal effects of 0.3, 0.37, 0.5, 0.75, and 1.5 mg/L of thiobencarb concentrations on the survival, reproduction, and growth of D. magna were monitored for 21 days. The parameters used to determined the effect of the herbicide on D. magna were mean total young per female; mean brood size; days to first brood; intrinsic rate of natural increase (r); growth; and survival. Reproduction was significantly reduced at thiobencarb concentrations of 0.30 mg/L and higher while survival was affected after exposure to 0.75 and 1.5 mg/L of the pesticide. The r value decreased with increasing concentrations of thiobencarb. Growth, as measured by body length, was depressed significantly after exposure to all herbicide concentrations tested.  相似文献   

16.
We evaluated the use of the gas exchange rate as an ecologically relevant indicator of chemical stress in avian embryos/eggs. Northern bobwhite quail (Colinus virginianus) were exposed to octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) via feed containing nominal concentrations of 0, 12.5, 50.0, and 125.0 mg kg(-1). Metabolic rates (oxygen consumption) of developing quail eggs were then measured via respirometry to examine potential effects of HMX exposure. Metabolic rates were examined on 5, 9, and 21 d of incubation. Next, concentrations of HMX in embryos/eggs were determined by liquid chromatography-mass spectrometry. Mean (+/-SE) concentrations of HMX in eggs were 21.0+/-5.9, 1113+/-79.0, 3864+/-154.0, and 7426+/-301.1 ng g(-1) in control, low, medium and high dose groups, respectively. There were significant differences in oxygen consumption among the three embryo ages, however differences among the ages were not consistent among dose groups (age x dose group interaction p<0.0001). Oxygen consumption rates did not vary as a function of HMX in embryos (p=0.18). No evidence was observed for alterations of in ovo metabolic rates associated with HMX exposure.  相似文献   

17.
GOAL, SCOPE AND BACKGROUND: The degree to which dose responses of model organisms (lab rodents) can adequately predict dose responses of free-ranging wild mammals or amphibians is unknown, and the relative sensitivity of such species to body loading of a toxicant such as glyphosate is seldom reported. For relative effects of dosage, we compare sensitivity of nine wild vertebrate species to effects of high doses of glyphosate in Swiss-Webster laboratory mice both by gavage and by intraperitoneal injection. We also evaluate sublethal effects of herbicide exposure on behavior and reproductive success of one mammal and one amphibian species. METHODS: Comparisons of acute toxicity of glyphosate were made with intraperitoneal dosings of technical glyphosate isopropylamine salt to nine species of terrestrial vertebrates (five amphibians, four mammals) and compared with responses in Swiss-Webster laboratory mice. Animals collected from sites that had no recent herbicide application were allowed 7-14 days to equilibrate in captivity before treatment. RESULTS: Median lethal dose ranged from 800 to 1,340 mg kg(-1) in mammals, and 1,170 to >2,000 mg kg(-1) in amphibians, with Oregon vole being the most sensitive. White lab mice were in the middle of the mammalian range. Tailed frog, at >2,000 mg kg(-1) was the least sensitive. Calibration of IP sensitivity to oral administration by gavage indicated that roughly four times as much glyphosate must be administered to obtain a comparable estimate of lethality. Administration by gavage in highly concentrated solutions tended to cause physical injury, hence may prove less useful as a relative indicator of toxicity. When sublethal dosages were given to roughskin newts or chipmunks, mobility and use of cover appeared largely unaffected. DISCUSSION: Direct toxic effects of spraying glyphosate under normal forest management seem unlikely for the nine species examined. Nor could we detect significant indirect effects of exposure on behavior and use of cover features in two species. There may be effects on other aspects of the field biology of these animals, such as reproductive rates, which we did not investigate. Recent field data indicate that changes in habitat quality following herbicide application can result in high reproductive activity in species associated with the grasses and forbs that proliferate following field applications. CONCLUSIONS: When compared to field data on body burdens of wild mammals exposed after aerial application of glyphosate at maximum rates in forests, there seems to be a large margin of safety between dosages encountered and those causing either death or limitation of movement, foraging or shelter. RECOMMENDATIONS AND PERSPECTIVES: Margins of safety for small mammals and amphibians appear to be large under any probable exposure scenarios, however our results indicate high variability in responses among species. Uncertainty introduced into field studies from unknown sources of mortality (e.g, likely predation) must be considered when interpreting our results.  相似文献   

18.
The (geno)toxicity of sediment dichloromethane extracts and fractions obtained by size exclusion chromatography were evaluated to investigate effects based on size fractionation. In this study, three sediments were selected according to their incremental contamination in PAHs and in PCBs: Hamilton harbour, Toronto bay and lake St. Clair sediments. Heavy metals, total sulfur and elemental sulfur (S8) were also determined in the (un)fractionated sediment extracts. The liver cells were exposed to concentrations of sediment extracts and fractionated samples for 24 h at 15 degrees C, afterwhich cell viability, cytochrome P4501A1 activity, available free Zn, DNA damage and oxidative stress were determined. The results showed that the sediment extracts contained high levels of sulfur most of which was found in the low molecular weight (LMW) region, i.e., the 2000-50 atomic mass unit (amu) fraction. Elemental sulfur (S8) accounted for 14-41% of extractable sulfur and were found to elute in the post-column volume (PCV) fraction despite its molecular weight of 256 amu. Heavy metals were found mainly in the HMW (i.e. the > 2000 amu) fraction and LMW fractions and very few or none were observed in the PCV fractions. In sediment extracts, sublethal effects were present principally by the HMW and LMW fractions suggesting that some chemicals were also associated with high molecular weight compounds of extractable organic matter. Less toxicity or effect was sometimes found in the extract indicating an antagonistic effect of the contaminants. We found that cell viability and genotoxicity evaluations could be performed on the unfractionated extracts while EROD, available Zn and oxidative stress measurements should be performed on the LMW fractions because of possible antagonist or shielding effects. Considering the cytotoxic responses, the best toxicity ranking in respect to contaminant levels in sediment extract was obtained with the LMW and PCV fractions which accounted for most of the toxic responses in the chromatographic fractions. Moreover, the shielding effect could be explained, in part, by the association of LMW contaminants to large macromolecules.  相似文献   

19.
BACKGROUND, AIM AND SCOPE: Pollution-induced endocrine disruption in vertebrates and invertebrates is a worldwide environmental problem, but relatively little is known about effects of endocrine disrupting compounds (EDCs) in planktonic crustaceans (including Daphnia magna). Aims of the present study were to investigate acute 48 h toxicity and sub-chronic (4-6 days) and chronic (21 days) effects of selected EDCs in D. magna. We have investigated both traditional endpoints as well as other parameters such as sex determination, maturation, molting or embryogenesis in order to evaluate the sensitivity and possible use of these endpoints in ecological risk assessment. MATERIALS AND METHODS: We have studied effects of four model EDCs (vinclozolin, flutamide, ketoconazole and dicofol) on D. magna using (i) an acute 48 h immobilization assay, (ii) a sub-chronic, 4-6 day assay evaluating development and the sex ratio of neonates, and (iii) a chronic, 21 day assay studying number of neonates, sex of neonates, molting frequency, day of maturation and the growth of maternal organisms. RESULTS: Acute EC50 values in the 48 h immobilization test were as follows (mg/L): dicofol 0.2, ketoconazole 1.5, flutamide 2.7, vinclozolin >3. Short-term, 4-6 day assays with sublethal concentrations showed that the sex ratio in Daphnia was modulated by vinclozolin (decreased number of neonate males at 1 mg/L) and dicofol (increase in males at 0.1 mg/L). Flutamide (up to 1 mg/L) had no effect on the sex of neonates, but inhibited embryonic development at certain stages during chronic assay, resulting in abortions. Ketoconazole had no significant effects on the studied processes up to 1 mg/L. DISCUSSION: Sex ratio modulations by some chemicals (vinclozolin and dicofol) corresponded to the known action of these compounds in vertebrates (i.e. anti-androgenicity and anti-oestrogenicity, respectively). Our study revealed that some chemicals known to affect steroid-regulated processes in vertebrates can also affect sublethal endpoints (e.g. embryonic sex determination and/or reproduction) in invertebrates such as D. magna. CONCLUSIONS: A series of model vertebrate endocrine disrupters affected various sub-chronic and chronic parameters in D. magna including several endpoints that have not been previously studied in detail (such as sex determination in neonates, embryogenesis, molting and maturation). Evaluations of traditional reproduction parameters (obtained from the 21 day chronic assay). as well as the results from a rapid, 4-6 day, sub-chronic assay provide complementary information on non-lethal effects of suspected organic endocrine disrupters. RECOMMENDATIONS AND PERSPECTIVES: It seems that there are analogies between vertebrates and invertebrates in toxicity mechanisms and in vivo effects of endocrine disruptors. However, general physiological status of organisms may also indirectly affect endpoints that are traditionally considered 'hormone regulated' (especially at higher effective concentrations as observed in this study) and these factors should be carefully considered. Further research of D. magna physiology and comparative studies with various EDCs will help to understand mechanisms of action as well as ecological risks of EDCs in the environment.  相似文献   

20.
The dependence of bats in Britain on houses as roosts may result in them being exposed to pesticides used in remedial timber treatments. Pentachlorophenol (PCP) and permethrin are used as a fungicide and an insecticide for timber treatment, respectively. The present study investigated toxicity and distribution in body tissues of these two pesticides in pipistrelle bats. Four groups of nine to ten bats were kept in separate outdoor flight enclosures and were provided with roost boxes treated with either PCP only, permethrin, PCP/permethrin mixture or solvent only (control). At the start of the experiment, mean (+/-SE) PCP and permethrin concentrations on the surface of wooden blocks that had been treated in the same way as roost boxes were 69.32+/-6.76 mg g(-1) (n=6) and 3.3+/-1.6 mg g(-1) (n=3), respectively. All bats exposed to PCP and PCP/permethrin treated boxes died within 24 and 120 h, respectively; nine out of the ten controls survived the 32 day experimental period (P<0.001; both groups compared with control). Bats exposed to permethrin treated boxes survived as well as controls. Mean (+/-SE) carcass PCP concentration (excluding deposits on fur) of bats exposed to PCP and PCP/permethrin treated boxes was 13.11+/-2.52 microg g(-1)BW (n=20). PCP burdens on fur were positively correlated with total weight of PCP in the carcass (P<0.001). PCP was present in fat depots, liver, kidney and the remainder of the body which, despite containing low PCP concentrations, was the main PCP reservoir (66.4+/-5.0% of carcass PCP load; n=20). Total PCP in the carcass was significantly correlated with lipid weight (P<0.005). Permethrin was not detectable in body washes and tissues of bats exposed to PCP/permethrin mixture or permethrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号