首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Greenhouse experiments were conducted to investigate the nature and severity of stresses imposed on northern hardwood tree species (red maple (Acer rubrum L.) and sugar maple (Acer saccharum Marsh.)) by the application of municipal landfill leachate. Red maple seedlings received applications of untreated and pretreated (lime, activated carbon) leachate, to both leaves and soil, at irrigation rates consistent with evapotranspirational demands. Plant height measurements indicated no significant growth effects arising from leachate application over a 7-week period. Stem diameter, however, was positively affected by applications of both untreated and lime-treated leachate diluted to 75% with deionized water. Iron foliar concentrations were significantly higher in seedlings irrigated with untreated leachate applied to leaves and soil, but not in seedlings where leachate was applied to soil only. Nitrogen foliar concentrations were substantially higher in seedlings receiving undiluted and untreated leachate applied to the soil only. The Cu concentration of the red maple foliage decreased appreciably in plants receiving moderate applications of leachate. Foliar Ca concentrations decreased notably in seedlings irrigated with untreated leachate applied to the soil and with diluted, carbon-treated leachate. The Cu concentration of the red maple foliage decreased appreciably in plants receiving applications of undiluted and 50% water-diluted lime-treated leachate while Mn levels were consistently high across all treatments. Leachate application did not cause any discernable changes in foliar concentrations of P, K, Mg, B or Zn. In an ancillary experiment, sugar maple seedlings were subjected to saturation/ drainage treatment cycles with undiluted and untreated leachate. Severe visible symptoms of vegetative stress were apparent within 24 h and 100% seedling mortality occurred after five such waterlogging cycles. Fe assimilation was apparent in both leachate treatments relative to the 24 h water treatment. Despite the short-term nature of the experiments, the results indicate how quickly forest vegetation may respond to altered chemical environments. This underscores the need for correct installation and control of leachate irrigation systems.  相似文献   

2.
Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10years with 35-140kg Nha(-2)y(-1) as NH(4)NO(3). Historic data suggests both grasslands have acidified over the past 50years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes.  相似文献   

3.
This paper describes a European wide assessment of element budgets, using available data on deposition, meteorology and soil solution chemistry at 121 Intensive Monitoring plots. Input fluxes from the atmosphere were derived from fortnightly or monthly measurements of bulk deposition and throughfall, corrected for canopy uptake. Element outputs from the forest ecosystem were derived by multiplying fortnightly or monthly measurements of the soil solution composition at the bottom of the root zone with simulated unsaturated soil water fluxes. Despite the uncertainties in the calculated budgets, the results indicate that: (i) SO4 is still the dominant source of actual soil acidification despite the generally lower input of S than N, due to the different behaviour of S (near tracer) and N (strong retention); (ii) base cation removal due to man-induced soil acidification is limited; and (iii) Al release is high in areas with high S inputs and low base status.  相似文献   

4.
Data from a large-scale foliar survey were used to calculate the extent to which N and S deposition determined the mineral composition of Scots pine and Norway spruce needles in Finland. Foliar data were available from 367 needle samples collected on 36 plots sampled almost annually between 1987 and 2000. A literature study of controlled experiments revealed that acidifying deposition mediates increasing N and S concentrations, and decreasing Mg:N and Ca:Al ratios in the needles. When this fingerprint for N and S elevated deposition on tree foliage was observed simultaneously with increased N and S inputs, it was considered sufficient evidence for assuming that acidifying deposition had altered the mineral composition of tree needles on that plot in the given year. Evidence for deposition-induced changes in the mineral composition of tree foliage was calculated on the basis of a simple frequency model. In the late eighties the evidence was found on 43% of the Norway spruce and 27% of Scots pine plots. The proportion of changed needle mineral composition decreased to below 8% for both species in the late nineties.  相似文献   

5.
Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988.  相似文献   

6.
In the context of intense emissions causing atmospheric pollution, tree growth reductions could be related to soil chemistry modifications or direct foliar injuries. To verify these hypotheses, mineral soils were sampled in an area (Murdochville, Canada) where previous studies had demonstrated that tree growth was impacted by smelter emissions and that forest floor lead concentrations could be used as a proxy for atmospheric pollutant depositions. Samples were analysed for Al, Pb (concentrations and isotope ratios), basic cations (Ca, K, P, and Mg) and Zr. Mass balance calculations were performed on soil profiles to assess vertical migration of elements. Pb concentrations in litter diminished gradually with distance from the smelter. The Pb isotope ratios in these organic soil layers were close to those measured in the Murdochville ores. These patterns were not encountered in mineral soil layers. Pb isotope ratios in these layers were close to those measured in uncontaminated geological materials, and Pb concentrations and basic cation depletions were not related to the proximity of the smelter. Growth reduction was closely associated with litter Pb concentrations, which were used as a proxy for atmospheric deposition, but was not correlated with any elemental concentration or cation depletion measured in mineral soil layers. Our overall results suggest that trees responded mainly to direct atmospheric emissions, which caused foliar damage, rather than to soil chemistry modifications.  相似文献   

7.
Lead concentrations and Pb isotope ratios were measured in the forest floor, mineral soil and vegetation at a white pine and a sugar maple stand in a woodland in south central Ontario. Lead concentrations decreased and 206Pb/207Pb ratios increased with mineral soil depth reflecting the mixing of pollution and natural Pb sources. Lead concentrations and 206Pb/207Pb ratios at 20-30 cm depth were approximately 6-7 mg/kg and 1.31-1.32, respectively. Assuming an integrated 206Pb/207Pb ratio in deposition over time of 1.18, estimated from lichen measurements and published data for the region, approximately 65% of Pb in the surface (0-1 cm) mineral soil is from anthropogenic sources. Approximately 90% of pollution Pb is found in the 0-10 cm soil layer (Ah) and less than 3% of the pollution Pb is present in the forest biomass and mull-type forest floor combined. Despite low Pb concentrations in vegetation (<2.5 mg/kg), we estimate that between 65 and 100% of the Pb in vegetation and approximately 75% of the Pb in the forest floor is from pollution sources. In total, the pollution Pb burdens at the pine and maple stands are estimated to be 860 and 750 mg/m2, respectively.  相似文献   

8.
To assess the suitability of dendrochemistry as an indicator of soil acidification, soil chemistry and tree ring information of Abies fabri were measured at two distinct sites (severe acid deposition site-Emei Mountain and clean site-Gongga Mountain) of the subalpine forest ecosystems of western Sichuan, southwest China. The actual soil acidity (pH) was significantly correlated with some of the recent xylem cation (Ca, Mg, Mn, Al, Sr and Ba) concentrations and their molar ratios. Xylem Ca/Mg and Ca/Mn of A. fabri were ultimately selected to reconstruct the historical changes of soil pH in Emei Mountain and Gongga Mountain, respectively. The validity of those rebuild was also verified to a certain extent. We conclude that xylem cation molar ratios of A. fabri were superior to the single cation concentrations in soil acidity rebuild at the study sites due to normalizing for concentration fluctuations.  相似文献   

9.
A field survey was performed in eastern Finland, where measured ambient SO2 concentrations were 1.4-3.8 microg m(-3) a(-1) and bulk S deposition 0.17-0.32 g m(-2) a(-1) in 1991-1993. The accumulation of sulphur (S) in needles of Scots pine (Pinus sylvestris L.) was studied with XRF, IC and FESEM analyses and the needle damage examined under a light microscope and by SEM. Foliar N concentrations were also measured. Foliar total S concentrations were observed to be above the normal S level (500-700 microg g(-1)) over almost the whole area. Slight chlorosis and/or necrosis of the needle tips and stomatal areas, changes in the needle surface waxes and localization of S into needle tips and mesophyll cells around the stomata suggested the impact of S deposition, as did the calculations of St/Nt, and 'predicted' and 'excess' S. A concentration of about 900 microg g(-1) may be considered a critical level for foliar St in areas with low N supply.  相似文献   

10.
The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.  相似文献   

11.
Since 1994 the nickel-processing plant at the Cu-Ni smelter at Harjavalta, south-west Finland, has emitted considerable amounts of NH(3) into the atmosphere. The effects of NH(3) emissions on nitrogen and sulphur deposition in throughfall and the foliar nutrient status were investigated in a Scots pine stand at 0.5 km distance. Bulk deposition, stand throughfall and percolation water (20 cm depth) samples were collected at 4-week intervals during 1992-1998. pH and the Ca, Mg, K, NH(4) and SO(4) concentrations were determined on the samples. NH(3) emissions have strongly increased the scavenging of SO(2) from the air in the pine stand, and the increased levels of N and S deposition were clearly evident as increased foliar N and S concentrations and larger needle size. The increased input of SO(4) into the forest floor was not associated with an increase in the leaching of Ca and Mg from the surface soil layers.  相似文献   

12.
Soil sensitivity to acidification in Asia: status and prospects   总被引:5,自引:0,他引:5  
Exceedance of steady-state critical loads for soil acidification is consistently found in southern China and parts of SE Asia, but there is no evidence of impacts outside of China. This study describes a methodology for calculating the time to effects for soils sensitive to acidic deposition in Asia under potential future sulfur (S), nitrogen (N), and calcium (Ca) emission scenarios. The calculations are matched to data availability in Asia to produce regional-scale maps that provide estimates of the time (y) it will take for soil base saturation to reach a critical limit of 20% in response to acidic inputs. The results show that sensitive soil types in areas of South, Southeast, and East Asia, including parts of southern China, Burma, Hainan, Laos, Thailand, Vietnam, and the Western Ghats of India, may acidify to a significant degree on a 0-50 y timescale, depending on individual site management and abiotic and biotic characteristics. To make a clearer assessment of risk, site-specific data are required for soil chemistry and deposition (especially base cation deposition); S and N retention in soils and ecosystems; and biomass harvesting and weathering rates from sites across Asia representative of different soil and vegetation types and management regimes. National and regional assessments of soils using the simple methods described in this paper can provide an appreciation of the time dimension of soil acidification-related impacts and should be useful in planning further studies and, possibly, implementing measures to reduce risks of acidification.  相似文献   

13.
The use of dendrochemistry for monitoring historical changes in trace metal deposition and mobilisation of metals in soils is evaluated. In experimental studies, mobilisation of trace metals in surface soil following deliberate acidification was recorded in sugar maple (Acer saccharum) tree-rings with minimal lateral movement between rings. Furthermore, positive correlations between wood (3 year section 1993-95) and foliar chemistry (mean concentration 1993-95) were found for Cd and Zn, but not for Cu and Ni, showing that mobility up the tree bole differs between metals. Even so, substantial lateral movement of elements between rings occurs in some species. Stable Pb isotope ratios in tree-rings were used to show that sacred fir (Abies religeosa) is not a useful monitor of Pb deposition because Pb accumulates in the heartwood. Numerous sophisticated analytical techniques are now used in dendrochemical studies, including laser ablation sampling in conjunction with inductively coupled plasma mass spectrometry that enable the multi-element analysis of extremely small tree-rings with low detection limits. Clearly, not all tree species are suitable for dendrochemical studies, but if careful sampling strategies are used and suitable tree species are chosen, the chemical analysis of tree-rings can provide information concerning historical changes in soil and atmospheric trace metal levels unavailable from any other source.  相似文献   

14.
The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.  相似文献   

15.
To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.  相似文献   

16.
Information on changes in precipitation chemistry in the rapidly expanding Cape Metropolitan Area (CMA) of South Africa is scarce. To obtain a long-term record of N deposition we investigated changes in moss foliar N, C:N ratios and nitrogen isotope values that might reflect precipitation chemistry. Tissue from 9 species was obtained from herbarium specimens collected between 1875 and 2000 while field samples were collected in 2001/2002. There is a strong trend of increasing foliar N content in all mosses collected over the past century (1.32-1.69 %N). Differences exist between ectohydric mosses which have higher foliar N than the mixohydric group. C:N ratios declined while foliar δ15N values showed no distinct pattern. From relationships between moss tissue N and N deposition rates we estimated an increase of 6-13 kg N ha−1 a−1 since 1950. Enhanced N deposition rates of this magnitude could lead to biodiversity losses in native ecosystems.  相似文献   

17.
Uptake of Al, Cu, Fe, Mn, Ni, Ca, K, Mg, P, and S in Empetrum nigrum L. ssp. hermaphroditum Hagerup and Vaccinium myrtillus L. from Ni, Cu and SO2 contaminated sites in S?r-Varanger, northern Norway, were investigated. The primary objective was to study the effect of airborne heavy metal pollution on foliar element composition of these two dwarf shrubs. Ni distribution and availability in soils clearly indicate atmospheric deposition of Ni particulates in S?r-Varanger. Foliar Ni concentrations in E. hermaphroditum and V. myrtillus increased in relation to plant available Ni in corresponding soils. Leaves of E. hermaphroditum generally contained higher concentrations of Ni than leaves of V. myrtillus. Emissions influenced some features of leaf elemental composition of the two species in very different ways. In leaves of V. myrtillus, S increased in proportion to Ni and Cu, while levels of Mn decreased. In leaves of E. hermaphroditum, Fe increased in proportion to Ni and Cu, while levels of Ca decreased.  相似文献   

18.
Long-term (1987–2012) water quality monitoring in 36 acid-sensitive Swedish lakes shows slow recovery from historic acidification. Overall, strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many acid-sensitive lakes. Base cation concentrations have declined less rapidly than strong acid anion concentrations, leading to an increase in charge balance acid neutralizing capacity. In many lakes, modeled organic acidity is now approximately equal to inorganic acidity. The observed trends in water chemistry suggest lakes may not return to reference conditions. Despite declines in acid deposition, many of these lakes are still acidified. Base cation concentrations continue to decline and alkalinity shows only small increases. A changing climate may further delay recovery by increasing dissolved organic carbon concentrations and sea-salt episodes. More intensive forest harvesting may also hamper recovery by reducing the supply of soil base cations.  相似文献   

19.
Potted sugar maple seedlings were exposed to ozone and acidic precipitation in open-top chambers for three consecutive growing seasons. Periodic measurements of photosynthesis, dark respiration, through-fall and soil solution chemistry, and annual measurements of the weight of plant parts were made. Experimental treatments caused few and minor effects on above- or below-ground growth of the seedlings, even after three growing seasons. There were trends for reduced photosynthesis in trees exposed to elevated concentrations of ozone and increased photosynthesis in those exposed to the lowest pH simulated rain treatment. The chemistries of soil-solutions and through-fall were not altered significantly by treatment. Although major effects were not observed, sugar maple may respond to exposures that take place over a significant part of its life cycle.  相似文献   

20.
Bayraktar H  Turalioglu FS 《Chemosphere》2005,59(11):1537-1546
Seasonal variations in the chemical characteristics of wet and bulk deposition samples collected in Erzurum were investigated for the period March 2002-January 2003. Major cations (Ca2+, K+, Mg2+) and major anions (SO4(2-),NO3-) were determined in bulk and wet deposition samples; pH was also measured in wet deposition. The average pH of the wet deposition at Erzurum was 6.6 due to extensive neutralization of the acidity. A strong relationship between pH and SO4(2-) concentrations was observed in all seasons; however, only a weak relationship was found between pH and NO3-. On a seasonal basis, the correlation between Ca2+ and SO4(2-) concentrations was stronger in winter than in summer. Seasonal variations of ions were examined in both wet and bulk deposition samples. Although maximum concentrations of anions generally occurred during winter and spring, cation concentrations peaked in summer for both wet and bulk deposition. Results indicated that Ca2+ was the dominant cation and SO4(2-) the dominant anion in all deposition samples at Erzurum. Even though correlations among the crustal ions (calcium, magnesium and potassium) were high, the relationship between anthropogenic ions (sulfate and nitrate) was less clear in bulk deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号