首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of a roadside windbreak of white pine trees in modifying the dispersion of vehicular lead emissions was evaluated. The lead content of foliage and twigs of various ages adjacent to and far from the road was analyzed by atomic absorption spectrophotometry. The lead burden of older needles and twigs was consistently greater than that of younger organs, and was greater in samples taken adjacent to than far from the road. The pattern of lead accumulation on mature needles, but not twigs, varied with precipitation prior to sampling. Twigs retained particles more effectively than needles throughout the season; twigs retained about 115% more lead as µg g-1 and about 2050% more lead as µg cm-2 than similarly located needles. The lead content of soil beneath the windbreak was compared with that of an adjacent, undisturbed field to assess whether the presence Of the windbreak resulted in lead enrichment of the underlying soil. The soil between the curb and the windbreak contained about 50% more lead than that of the field at a similar distance from the road. Within the windbreak, the soil contained about twice the lead content of the soil in the open field at a similar distance from the curb. Windbreaks function as sinks for vehicular lead emissions and thus decrease their dispersion from roads.  相似文献   

2.
Two lead (Pb)-resistant endophytic bacteria were isolated from rape roots grown in heavy metal-contaminated soils and characterized. A pot experiment was conducted for investigating the capability of the two isolates to promote the growth and Pb uptake of rape from Pb-amended soil. The two isolates were identified as Pseudomonas fluorescens G10 and Microbacterium sp. G16 based on the 16S rDNA gene sequence analysis. Strains G10 and G16 exhibited different multiple heavy metal and antibiotic resistance characteristics and increased water-soluble Pb in solution and in Pb-added soil. Root elongation assays demonstrated increases in root elongation of inoculated rape seedlings compared to the control plants. Strain G16 produced indole acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase. Increases in biomass production and total Pb uptake in the bacteria-inoculated plants were obtained compared to the control. The two strains could colonize the root interior and rhizosphere soil of rape after root inoculation.  相似文献   

3.
Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg?1 Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg?1 soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg?1 soil). The results revealed that PGPR significantly decreases the deleterious effects of Pb pollution and increases the maize growth under all Pb concentrations, i.e., 100–400 Pb mg kg?1 soil. PGPR chelate the Pb in the soil, and ultimately influence its bioavailability, release and uptake. The PGPR having both ACC-deaminase and nitrogen-fixing abilities are more effective and resistive against Pb pollution than PGPR having either ACC-deaminase or nitrogen-fixing activity alone. The ACC enrichment technique is an efficient approach to select promising PGPR.  相似文献   

4.
Lead concentrations and Pb isotope ratios were measured in the forest floor, mineral soil and vegetation at a white pine and a sugar maple stand in a woodland in south central Ontario. Lead concentrations decreased and 206Pb/207Pb ratios increased with mineral soil depth reflecting the mixing of pollution and natural Pb sources. Lead concentrations and 206Pb/207Pb ratios at 20-30 cm depth were approximately 6-7 mg/kg and 1.31-1.32, respectively. Assuming an integrated 206Pb/207Pb ratio in deposition over time of 1.18, estimated from lichen measurements and published data for the region, approximately 65% of Pb in the surface (0-1 cm) mineral soil is from anthropogenic sources. Approximately 90% of pollution Pb is found in the 0-10 cm soil layer (Ah) and less than 3% of the pollution Pb is present in the forest biomass and mull-type forest floor combined. Despite low Pb concentrations in vegetation (<2.5 mg/kg), we estimate that between 65 and 100% of the Pb in vegetation and approximately 75% of the Pb in the forest floor is from pollution sources. In total, the pollution Pb burdens at the pine and maple stands are estimated to be 860 and 750 mg/m2, respectively.  相似文献   

5.
重金属钝化剂可以改变土壤中重金属的形态,降低其在土壤中的有效浓度、植物毒性及生物有效性,影响污染土壤中植物的生长及其对重金属的吸收。在温室盆栽条件下研究了施加羟基磷灰石(HA)、纳米羟基磷灰石(nHA)、纳米零价铁(nFe0)和纳米TiO2nTiO2)对烟草植物修复铅镉污染土壤的作用。结果表明,HA降低土壤中Pb、Cd的有效性、促进烟草生长、增加了烟草叶、茎、根中Cd的吸收量和根系中Pb的吸收量,有利于Pb、Cd的钝化和植物修复。nHA也可以降低土壤中Pb、Cd的有效性,增加了烟草叶中Cd的吸收量,有利于Pb、Cd的钝化和Cd的植物提取。nFe0nTiO2对于土壤Pb和Cd的钝化作用和植物修复均没有显著影响。综合来看,HA最适合应用于烟草植物修复铅镉污染土壤。  相似文献   

6.
Radioactive sulphate (35SO4) was applied to the soil below a Scots pine forest on 23 June 1989, and its movement into the canopy and into throughfall and stemflow was measured over 4 months. The specific activity, Bq (mg S)(-1), of the canopy increased monotonically; uptake by current-year (1989) expanding needles was initially twice as fast as by older needles or live twigs. By 10 October the canopy average specific activity was 62 Bq (mg S)(-1). The specific activity of net throughfall (throughfall + stemflow - rain), deduced from measurements from six throughfall collectors, six stemflow collectors and two rain collectors, fell rapidly from 12.6 Bq (mg S)(-1) in late July to <1 Bq (mg S)(-1) in mid-August. The results suggest (assuming rapid equilibration of 35S with sulphate in soil) that root-derived sulphate contributed c. 3% of sulphate in net throughfall and that dry deposition of SO2 and sulphate particles contributed c. 97% of the 0.56 g S m(-2) measured in net throughfall over the period. Simultaneous measurements of SO2 at canopy height and of NH3 above and within the canopy gave mean concentrations of 5.9 and 0.86 microg m(-3), respectively, sufficient to account for the sulphate measured in net throughfall only if codeposition of NH3 and SO2 occurred to canopy surfaces. The large values of specific activity observed in July, however, indicate that throughfall composition may be closely related to recent soil input of sulphate, and that equilibrium cannot be safely assumed. The possibility of a significant contribution of soil-derived sulphate to sulphate deposition in net throughfall cannot be ruled out on the basis of this experiment.  相似文献   

7.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

8.
Chen Y  Li X  Shen Z 《Chemosphere》2004,57(3):187-196
In a pot experiment, the potential use of 10 plant species, including six dicotyledon species and four monocotyledon species, was investigated for the EDTA-enhanced phytoextraction of Pb from contaminated soil. Mung bean and buckwheat had a higher sensitivity to the EDTA treatment in soils. In the 2.5 and 5.0 mmol kg(-1) EDTA treatments, the Pb concentrations in the shoots of the six dicotyledon species ranged from 1,000 to 3,000 mg kg(-1) of dry matter, which were higher than those of the monocotyledon species. The highest amount of phytoextracted Pb (2.9 mg Pb pot(-1)) was achieved in sunflowers, due to the high concentration of Pb in their shoots and large biomass, followed by corns (1.8 mg Pb pot(-1)) and peas (1.1 mg Pb pot(-1)). The leaching behavior of heavy metals as a result of applying EDTA to the surface of the soil was also investigated using short soil-leaching columns (9.0-cm diameter, 20-cm height) by the percolation of artificial rainfall. About 3.5%, 15.8%, 13.7% and 20.6% of soil Pb, Cu, Zn and Cd, respectively, were leached from the soil columns after the application of 5.0 mmol kg(-1) of EDTA. The growth of sunflowers in the soil columns had little effect on the amount of metals that were leached out. This was probably due to the shallowness of the layer of soil, the short time-span of the uptake of metals by the plant and the plant's simple root systems.  相似文献   

9.
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg?1), Cu (8.21 mg kg?1), Pb (41.62 mg kg?1), and Zn (696 mg kg?1) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg?1, respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.  相似文献   

10.
Radionuclide concentration analysis of total moss bodies often gave relatively different results than a separate analysis of each different morphological part of the same sample. The dynamics of the transfer of metals by dust uplifted from the soil and another approach, based on the diffusion of the two radionuclides to the moss, have been analyzed. In the proposed model, short- and long-term approaches have been applied. Each part of a moss’s profile can show different radionuclides accumulation ability, including both 210Pb and 210Po isotopes. A first-order kinetic model has been used for 210Po and 210Pb transport between three body components of mosses. This mathematical approach has been applied for 210Po activity concentration in the air estimation. For relatively clean deep forest region, calculated concentrations were from 17.2 to 43.8 μBqm?3, while for urban air concentrations were higher from 49.1 to 104.9 μBqm?3.  相似文献   

11.
Metal contaminated crops from contaminated soils are possible hazards for the food chain. The aim of this study was to find practical and cost-effective measures to reduce metal uptake in crops grown on metal contaminated soils near a former metal smelter in Austria. Metal-inefficient cultivars of crop plants commonly grown in the area were investigated in combination with in-situ soil amendments. A laboratory batch experiment using 15 potential amendments was used to select 5 amendments to treat contaminated soil in a pot study using two Barley (Hordeum vulgare L.) cultivars that differed in their ability to accumulate cadmium. Results from this experiment identified 3 of these amendments for use in a field trial. In the pot experiment a reduction in ammonium nitrate extractable Cd (<41%) and Pb (<49%) compared to the controls was measured, with a concurrent reduction of uptake into barley grain (Cd<62%, Pb<68%). In the field extractable fractions of Cd, Pb, and Zn were reduced by up to 96%, 99%, and 99%, respectively in amended soils.  相似文献   

12.
A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg−1) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.  相似文献   

13.
Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PCn, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg−1 dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PCn, and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg −1 EDTA, vetiver accumulated 4460 and 480 mg Pb kg−1 dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC1) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC1-Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass.  相似文献   

14.
The ammonium content and the base cation content, expressed relative to ammonium, are enhanced in the soil of Dutch forests, due to the extremely high deposition of ammonium to the forest floor. A nation-wide investigation was carried out to establish whether and how these changed nitrogen fluxes in deposition and soil affect the nutritional status of coniferous trees. The chemical composition of needles of Douglas fir, Scots pine and Corsican pine showed a regional trend similar to that of deposition and soil solution. Particularly nutrients, expressed relative to nitrogen, decreased from North to South. Of the macronutrients phosphorus was most often deficient and therefore probably limiting in the Douglas fir stands. Many pine trees suffered from relative magnesium shortages. In all stands, magnesium and, in Douglas stands, also phosphorus contents of the needles were negatively correlated with ammonium and ammonium/cation ratios in deposition. However, in contrast to pine trees, nutrient contents in needles of Douglas fir showed correlation with nitrate rather than with ammonium in the soil solution. Correlation analyses indicate that nitrogen fluxes in the soil, indirectly affect the nutritional status of coniferous trees.  相似文献   

15.
The objectives of this research were to study the effects of Na2SiO3 application on the uptake, translocation, and accumulation of Pb in rice and to investigate the mechanisms of Pb immobilization by Na2SiO3 in paddy rice soils and rice plants. Pot experiments were conducted using a Cd-Pb-Zn-polluted soil and Oryza sativa L. ssp. indica cv. Donglian 5. L3-edge X-ray absorption spectroscopy was used to identify Pb species in soils and roots. The results showed that the application of Na2SiO3 increased soil pH and available soil Si but decreased DTPA-extractable Pb in the soil. High dose of Na2SiO3 (12.5 g/kg) reduced the Pb level in brown rice as it inhibited Pb transfer from soil to rice grains, especially Pb transfer from the root to the stem. The Pb X-ray absorption near-edge spectroscopic analysis revealed that application of high dose of Na2SiO3 increased Pb-ferrihydrite and PbSiO3 precipitates in the soil and in the root while it reduced Pb-humic acids (Pb-HAs) in the soil and Pb-pectin in the root. The decrease in Pb availability in the soil can be partly attributed to increase the precipitation of PbSiO3 and the association of Pb2+ with Fe oxides in the soil. The inhibition of the root-to-stem translocation of Pb was partially due to the precipitation of PbSiO3 on the root surfaces or inside the roots.  相似文献   

16.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

17.
In the context of intense emissions causing atmospheric pollution, tree growth reductions could be related to soil chemistry modifications or direct foliar injuries. To verify these hypotheses, mineral soils were sampled in an area (Murdochville, Canada) where previous studies had demonstrated that tree growth was impacted by smelter emissions and that forest floor lead concentrations could be used as a proxy for atmospheric pollutant depositions. Samples were analysed for Al, Pb (concentrations and isotope ratios), basic cations (Ca, K, P, and Mg) and Zr. Mass balance calculations were performed on soil profiles to assess vertical migration of elements. Pb concentrations in litter diminished gradually with distance from the smelter. The Pb isotope ratios in these organic soil layers were close to those measured in the Murdochville ores. These patterns were not encountered in mineral soil layers. Pb isotope ratios in these layers were close to those measured in uncontaminated geological materials, and Pb concentrations and basic cation depletions were not related to the proximity of the smelter. Growth reduction was closely associated with litter Pb concentrations, which were used as a proxy for atmospheric deposition, but was not correlated with any elemental concentration or cation depletion measured in mineral soil layers. Our overall results suggest that trees responded mainly to direct atmospheric emissions, which caused foliar damage, rather than to soil chemistry modifications.  相似文献   

18.
CALPUFF is an atmospheric source-receptor model recommended by the U.S. Environmental Protection Agency for use on a case-by-case basis in complex terrain and wind conditions. The ability of the model to provide useful information for exposure assessments in areas with those topographical and meteorological conditions has received little attention. This is an important knowledge gap for use of CALPUFF outside of regulatory applications, such as exposure analyses conducted in support of risk assessments and health studies. We compared deposition of cadmium (Cd), lead (Pb), and zinc (Zn) calculated with CALPUFF as a result of emissions from a zinc smelter with corresponding concentrations of the metals measured in attic dust and soil samples obtained from the surrounding area. On a point-by-point analysis, predictions from CALPUFF explained 11% (lead) to 53% (zinc) of the variability in concentrations measured in attic dust. Levels of heavy metals in soil interpolated to 100 residential addresses from the distribution of concentrations measured in soil samples also agreed well with deposition predicted with CALPUFF: R2 of 0.46, 0.76, and 079 for Pb, Cd, and Zn, respectively. Community-average concentrations of Cd, Pb, and Zn measured in soil were significantly (p < 0.0001) and strongly correlated (R2 ranged from 0.77 to 0.98) with predicted deposition rates. These findings demonstrate that CALPUFF can provide reasonably accurate predictions of the patterns of long-term air pollutant deposition in the near-field associated with emissions from a discrete source in complex terrain. Because deposition estimates are calculated as a linear function of air concentrations, CALPUFF is expected to be reliable model for prediction of long-term average, near-field ambient air concentrations in complex terrain as well.  相似文献   

19.
A pot experiment was conducted to investigate the translocation of cadmium (Cd) and lead (Pb) and assess the safety of edible parts in two cultivars of water spinach (Ipomoea aquatica Forsk.) contrasting in shoot Cd and Pb concentrations. A low-Cd-Pb cultivar (QLQ) and a high-Cd-Pb cultivar (T308) were grown in five soils with different concentrations of Cd and Pb. The results showed that QLQ had lower Cd and Pb concentrations in stems and leaves and higher root Cd concentration than T308 did. Root Pb concentration of T308 dramatically increased with increasing soil Pb concentration and was higher than that of QLQ in the highest Pb treatment. The root-to-stem Cd translocation ability in T308 was 2.3–3.0-fold higher than that in QLQ. Nevertheless, there was no significant difference in root-to-stem Pb translocation between QLQ and T308. The bioconcentration factors (BCFs) for Cd and Pb in the two cultivars remained stable in different Cd or Pb treatments, which were attributable to the homeostatic control mechanisms of Cd and Pb in water spinach.  相似文献   

20.
The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号