首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Open-air burning of agricultural wastes from crops like corn, rice, sorghum, sugar cane, and wheat is common practice in Mexico, which in spite limiting regulations, is the method to eliminate such wastes, to clear the land for further harvesting, to control grasses, weeds, insects, and pests, and to facilitate nutrient absorption. However, this practice generates air pollution and contributes to the greenhouse effect. Burning of straws derived from the said crops was emulated in a controlled combustion chamber, hence determining emission factors for particles, black carbon, carbon dioxide, carbon monoxide, and nitric oxide throughout the process, which comprised three apparent stages: pre-ignition, flaming, and smoldering. In all cases, maximum particle concentrations were observed during the flaming stage, although the maximum final contributions to the particle emission factors corresponded to the smoldering stage. The comparison between particle size distributions (from laser spectrometer) and black carbon (from an aethalometer) confirmed that finest particles were emitted mainly during the flaming stage. Carbon dioxide emissions were also highest during the flaming stage whereas those of carbon monoxide were highest during the smoldering stage. Comparing the emission factors for each straw type with their chemical analyses (elemental, proximate, and biochemical), some correlations were found between lignin content and particle emissions and either particle emissions or duration of the pre-ignition stage. High ash or lignin containing-straw slowed down the pre-ignition and flaming stages, thus favoring CO oxidation to CO2.

  相似文献   

2.
Submicron particles were collected from June to September 2008 in La Jolla, California to investigate the composition and sources of atmospheric aerosol in an anthropogenically-influenced coastal site. Factor analysis of aerosol mass spectrometry (AMS) and Fourier transform infrared (FTIR) spectroscopy measurements revealed that the two largest sources of submicron organic mass (OM) at the sampling site were (1) fossil fuel combustion associated with ship and diesel truck emissions near the ports of Los Angeles and Long Beach and (2) aged smoke from large wildfires burning in central and northern California. During non-fire periods, fossil fuel combustion contributed up to 95% of FTIR OM, correlated to sulfur, and consisted mostly of alkane (86%) and carboxylic acid groups (9%). During fire periods, biomass burning contributed up to 74% of FTIR OM, consisted mostly of alkane (48%), ketone (25%), and carboxylic acid groups (17%), and correlated to AMS-derived factors resembling brush fire smoke, wood smoldering and flaming particles, and biogenic secondary organic aerosol. The two AMS-derived biomass burning factors were identified as oxygenated and hydrocarbon biomass burning aerosol on the basis of spectral similarities to smoldering and flaming smoke particles, respectively. In addition, the ratio of oxygenated to hydrocarbon biomass burning OM shows a clear diurnal trend with an afternoon peak, consistent with photochemical oxidation. Back trajectory analysis indicates that 2–4-day old forest fire emissions include substantial ketone groups, which have both lower O/C and lower m/z 44/OM fraction than carboxylic acid groups. Air masses with more than 4-day old emissions have higher carboxylic acid/ketone group ratios, showing that atmospheric processing of these ketone-containing organic aerosol particles results in increased m/z 44 and O/C. These observations may provide functionally-specific evidence for the type of chemical processing that is responsible for biomass burning particle composition in the atmosphere.  相似文献   

3.
Pollutants sampled during the burning of 30 lb ponderosa pine fuel beds yielded emission factors for CO, hydrocarbon gases, and par-ticulate matter of 146, 8.4, and 9.1 lb/ton of fuel, respectively. When similar beds were treated with diammonium phosphate flame retardant, these factors increased to 166, 11.7, and 19.3 lb/ton of fuel, respectively.

Gas chromatographic analysis of hydrocarbon gases showed that 15-40% of this material was composed of methane and eth-ylene. Ethane and acetylene were the next most abundant materials, with photochemically important materials constituting minor portions of this gaseous component. Fuel beds treated with flame retardant produced more oiefins, and this production lasted throughout the smoldering phase of burning.

These tests showed that the smoldering phase of combustion is of major importance to air pollutant production during slash burning. The initial 80% of the fuel burned accounted for only 20-30% of HC and CO emissions. This suggests that a rapid mop-up of slash burns could substantially reduce air pollutant production.  相似文献   

4.
The objective of this study was to investigate the organic composition of wood smoke emissions and ambient air samples in order to determine the wood smoke contribution to the ambient air pollution in the residential areas. From November 2005 to March 2006 particle-phase PM10 samples were collected in the residential town Dettenhausen surrounded by forests near Stuttgart in southern Germany. Samples collected on pre-baked glass fibre filters were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). 21 polycyclic aromatic hydrocarbons (PAH) including 16 USEPA priority pollutants, different organic wood smoke tracers, primarily 21 species of syringol and guaiacol derivatives, levoglucosan and its isomers mannosan, galactosan and dehydroabietic acid were detected and quantified in this study. The concentrations of these compounds were compared with the fingerprints of emissions from hardwood and softwood combustion carried out in test facilities at Universitaet Stuttgart and field investigations at a wood stove during real operation in Dettenhausen. It was observed that the combustion derived PAH was detected in higher concentrations than other PAH in the ambient air PM10 samples. Syringol and its derivatives were found in large amounts in hardwood burning but were not detected in softwood burning emissions. On the other hand, guaiacol and its derivatives were found in both softwood and hardwood burning emissions, but the concentrations were higher in the softwood smoke compared to hardwood smoke. So, these compounds can be used as typical tracer compounds for the different types of wood burning emissions. In ambient air samples both syringol and guaiacol derivatives were found which indicates the wood combustion contribution to the PM load in such residential areas. Levoglucosan was detected in high concentrations in all ambient PM10 samples. A source apportionment modelling, Positive Matrix Factorization (PMF) was implemented to quantify the wood smoke contribution to the ambient PM10 bound organic compounds in the residential area.  相似文献   

5.
The replacement of the Desert Research Institute (DRI) model 2001 with model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) database, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, nonurban Interagency Monitoring of PROtected Visual Environments (IMPROVE) samples show higher BrC fractions of short-wavelength absorption than urban Chemical Speciation Network (CSN) samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event.

Implications: The inclusion of seven wavelengths in thermal/optical carbon analysis of speciated PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples allows contributions from biomass burning and secondary organic aerosols to be estimated. This separation is useful for evaluating control strategy effectiveness, identifying exceptional events, and determining natural visibility conditions.  相似文献   


6.
Open burning for waste disposal is, in many countries, the dominant source of polychlorinated dibenzodioxins, dibenzofurans and biphenyls (PCDD/PCDF/PCB) release to the environment. To generate emission factors for open burning, experimental pile burns of about 100 kg of household waste were conducted with emissions sampling. From these experiments and others conducted by the same authors it is found that less compaction of waste or active mixing during the fire - “stirring” - promotes better combustion (as evidenced by lower CO/CO2 ratio) and reduces emissions of PCDD/PCDF/PCB; an intuitive but previously undemonstrated result. These experiments also support previous results suggesting PCDD/PCDF/PCB generation in open burning - while still highly variable - tends to be greater in the later (smoldering) phases of burning when the CO/CO2 ratio increases.  相似文献   

7.
Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM2.5, PM10, organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM2.5 ranged from 1.19 to 11.30 g kg?1, and of PM10 from 1.77 to 21.56 g kg?1. EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM2.5 ranged from 0.15 to 0.41 g kg?1 and from 0.33 to 5.29 g kg?1, respectively, and in PM10, from 0.17 to 0.43 g kg?1 and from 0.54 to 11.06 g kg?1. CO2 represented the largest gaseous emissions volume with 1053.35–1850.82 g kg?1, whereas the lowest was CH4 with 1.61–5.59 g kg?1. CO ranged from 28.85 to 155.71 g kg?1, correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned.

Implications: The emission factors of particles, short-lived climatic pollutants, and atmospheric pollutants from the crop residues burning of eight agricultural wastes crops, determined in this study using a standardized method, provides better knowledge of the emissions of those species in Latin America and other developing countries, and can be used as inputs in air quality models and climatic studies. The EFs will allow the development of more accurate inventories of aerosols and gaseous pollutants, which will lead to the design of effective mitigation strategies and planning processes for sustainable agriculture.  相似文献   

8.
Gaseous and particulate samples from the smoke from prescribed burnings of a shrub-dominated forest with some pine trees in Lousã Mountain, Portugal, in May 2008, have been collected. From the gas phase Fourier transform infrared (FTIR) measurements, an average modified combustion efficiency of 0.99 was obtained, suggesting a very strong predominance of flaming combustion. Gaseous compounds whose emissions are promoted in fresh plumes and during the flaming burning phase, such as CO2, acetylene and propene, produced emission factors higher than those proposed for savannah and tropical forest fires. Emission factors of species that are favoured by the smouldering phase (e.g. CO and CH4) were below the values reported in the literature for biomass burning in other ecosystems. The chemical composition of fine (PM2.5) and coarse (PM2.5–10) particles was achieved using ion chromatography (water-soluble ions), instrumental neutron activation analysis (trace elements) and a thermal–optical transmission technique (organic carbon and elemental carbon). Approximately 50% of the particulate mass was carbonaceous in nature with a clear dominance of organic carbon. The organic carbon-to-elemental carbon ratios up to 300, or even higher, measured in the present study largely exceeded those reported for fires in savannah and tropical forests. More than 30 trace elements and ions have been determined in smoke aerosols, representing in total an average contribution of about 7% to the PM10 mass.  相似文献   

9.
Fires are becoming more violent and frequent resulting in major economic losses and long-lasting effects on communities and ecosystems; thus, efficient fire monitoring is becoming a necessity. A novel triple multi-sensor approach was developed for monitoring and studying the burning of dry forest fuel in an open field scheduled experiment; chemical, optical, and acoustical sensors were combined to record the fire spread. The results of this integrated field campaign for real-time monitoring of the fire event are presented and discussed. Chemical analysis, despite its limitations, corresponded to the burning process with a minor time delay. Nevertheless, the evolution profile of CO2, CO, NO, and O2 were detected and monitored. The chemical monitoring of smoke components enabled the observing of the different fire phases (flaming, smoldering) based on the emissions identified in each phase. The analysis of fire acoustical signals presented accurate and timely response to the fire event. In the same content, the use of a thermographic camera, for monitoring the biomass burning, was also considerable (both profiles of the intensities of average gray and red component greater than 230) and presented similar promising potentials to audio results. Further work is needed towards integrating sensors signals for automation purposes leading to potential applications in real situations.  相似文献   

10.
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.  相似文献   

11.
ABSTRACT

Data describing the composition of smoke are inherently multivariate and always non-negative parts of a whole. The data are relative and the information is contained in the ratios between parts of the composition. A prior analysis of smoke emissions produced from the burning of manzanita wood mixed with low-density polyethylene plastic applied traditional statistical methods to the compositional data and found no effect. The current paper applies compositional data techniques to these smoke emissions to determine if the prior analysis was accurate. Analysis of variance of the isometric log-ratios showed that LDPE significantly affected the CO2 emission ratio for 8 of the 191 trace gases; this analysis showed none of the gases identified in the previous analysis were affected by LDPE. LDPE did not affect the CO2 emission ratios for the alkanes, alkenes, alkynes, aldehydes, cycloalkanes, cycloalkenes, diolefins, ketones, MAHs, and PAHs. Compositional data analysis should be used to analyze smoke emissions data. Burning contaminant-free LDPE should produce emissions like wood.  相似文献   

12.
Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on ACD emissions was reviewed to identify potential environmental issues associated with ACD disposal of construction and demolition (C&D) debris. Although no data have been published on emissions from C&D debris combustion in an ACD, a few studies provided information on emissions from the combustion of vegetative debris. These studies are reviewed, and the results compared with studies of open burning of biomass. Combustion of vegetative debris in ACD units results in significantly lower emissions of particulate matter and CO per unit of mass of debris compared with open pile burning. The available data are not sufficient to make general estimates regarding emissions of organic or metal compounds. The highly transient nature of the ACD combustion process, a minimal degree of operational control, and significant variability in debris properties make accurate prediction of ACD emissions impossible in general. Results of scoping tests conducted in preparation for possible in-depth emissions tests demonstrate the challenges associated with sampling ACD emissions and highlight the transient nature of the process. The environmental impacts of widespread use of ACDs for disposal of vegetative debris and their potential use to reduce the volume of C&D debris in future disaster response scenarios remain a considerable gap in understanding the risks associated with debris disposal options.  相似文献   

13.
Rice hulls are widely burnt in agricultural fields in Asia because it is difficult to find other uses for them. Farmers burn rice hulls usually under incomplete combustion conditions to avoid accidental fires. In this study we investigated carbon gas emissions from rice hull fires at controlled wind speeds in a wind tunnel to clarify the effect of wind on such fires. Burning of the rice hulls resulted in relatively incomplete combustion: the ratio of [CO] to [CO2] was high, >0.2, except when burning occurred at high wind speeds. Distinct differences in the carbon ratios of emitted carbon gases (CO2, CO, CH4, and nonmethane volatile organic compounds [NMVOC]) were found between high and low wind speeds: at high wind speeds, flames were usually present, and the CO2 contribution to total carbon gases was higher; at low wind speeds, the NMVOC and CH4 contributions to total carbon gases were greater. Therefore, a compensatory relationship existed between NMVOC and CH4 and CO2. Additionally, the ratio of [consumed O2] to [CO2] was <1 during the smoldering phase of combustion and >1 during the charcoal phase, synchronous with changes in [CH4] and [NMVOC].  相似文献   

14.
The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.  相似文献   

15.
Emission from large-scale post-harvest agricultural-waste burning (paddy-residue burning during October–November and wheat-residue burning in April–May) is a conspicuous feature in northern India. The poor and open burning of agricultural residue result in massive emission of carbonaceous aerosols and organic pollutants to the atmosphere. In this context, concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) and their isomer ratios have been studied for a 2-year period from a source region (Patiala: 30.2°N; 76.3°E) of two distinct biomass burning emissions. The concentrations of 4—6 ring PAHs are considerably higher compared to 2–3 ring PAHs in the ambient particulate matter (PM2.5). The crossplots of PAH isomer ratios, fluoranthene?/?(fluoranthene?+?pyrene) and indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene?+?benzo[g,h,i]perylene) for two biomass burning emissions, exhibit distinctly different source characteristics compared to those for fossil-fuel combustion sources in south and south-east Asia. The PAH isomer ratios studied from different geographical locations in northern India also exhibit similar characteristics on the crossplot, suggesting their usefulness as diagnostic tracers of biomass burning emissions.  相似文献   

16.
The emissions from burning the residue following grass-seed harvest were determined by means of a combined laboratory-field study. Samples of the straw and stubble residue were burned in the laboratory burning tower at the University of California at Riverside. Complete analyses were determined for gaseous and particulate emissions for the important grass species from the Willamette Valley of Oregon. Particulate emissions averaged 15.6 lb/ton of fuel burned. Carbon monoxide averaged 101 lb/ton of fuel burned. Hydrocarbon emission averages, in pounds per ton of fuel burned, were 1.74 for saturates plus acetylene, 2.80 for defines, and 1.68 for ethylene. The NOx emission, at the temperature peak during the burn, averaged 29.3 ppm. Field studies, conducted by personnel from Oregon State University, measured only particulate emissions, carbon dioxide, and temperature over the burn. The carbon dioxide values were found to be similar to those obtained on the burning table at UCR and it was therefore concluded that the other gaseous emissions were similar and could be used as reasonably accurate for emission inventories. The temperature values obtained in the laboratory and field were also similar and further justifies extrapolating the burning table data to field situations. The particulate matter collected in the field studies averaged 15.55 lb of particulate per ton of fuel burned. This is the same average obtained for the burning table data which again serves to validate the emissions reported from Riverside. Much more variability was found in the particulate emissions obtained in the field which reflects the wider range of environmental conditions encountered in the field.  相似文献   

17.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   

18.
A series of source tests was performed to evaluate the chemical composition of particle emissions from the woodstove combustion of four prevalent Portuguese species of woods: Pinus pinaster (maritime pine), Eucalyptus globulus (eucalyptus), Quercus suber (cork oak) and Acacia longifolia (golden wattle). Analyses included water-soluble ions, metals, radionuclides, organic and elemental carbon (OC and EC), humic-like substances (HULIS), cellulose and approximately l80 organic compounds. Particle (PM10) emission factors from eucalyptus and oak were higher than those from pine and acacia. The carbonaceous matter represented 44–63% of the particulate mass emitted during the combustion process, regardless of species burned. The major organic components of smoke particles, for all the wood species studied, with the exception of the golden wattle (0.07–1.9% w/w), were anhydrosugars (0.2–17% w/w). Conflicting with what was expected, only small amounts of cellulose were found in wood smoke. As for HULIS, average particle mass concentrations ranged from 1.5% to 3.0%. The golden wattle wood smoke presented much higher concentrations of ions and metal species than the emissions from the other wood types. The results of the analysis of radionuclides revealed that the 226Ra was the naturally occurring radionuclide more enriched in PM10. The chromatographically resolved organics included n-alkanes, n-alkenes, PAH, oxygenated PAH, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl ester acids.  相似文献   

19.
PM2.5 (particles with aerodynamic diameters less than 2.5 μm) chemical source profiles applicable to speciated emissions inventories and receptor model source apportionment are reported for geological material, motor vehicle exhaust, residential coal (RCC) and wood combustion (RWC), forest fires, geothermal hot springs; and coal-fired power generation units from northwestern Colorado during 1995. Fuels and combustion conditions are similar to those of other communities of the inland western US. Coal-fired power station profiles differed substantially between different units using similar coals, with the major difference being lack of selenium in emissions from the only unit that was equipped with a dry limestone sulfur dioxide (SO2) scrubber. SO2 abundances relative to fine particle mass emissions in power plant emissions were seven to nine times higher than hydrogen sulfide (H2S) abundances from geothermal springs, and one to two orders of magnitude higher than SO2 abundances in RCC emissions, implying that the SO2 abundance is an important marker for primary particle contributions of non-aged coal-fired power station contributions. The sum of organic and elemental carbon ranged from 1% to 10% of fine particle mass in coal-fired power plant emissions, from 5% to 10% in geological material, >50% in forest fire emissions, >60% in RWC emissions, and >95% in RCC and vehicle exhaust emissions. Water-soluble potassium (K+) was most abundant in vegetative burning profiles. K+/K ratios ranged from 0.1 in geological material profiles to 0.9 in vegetative burning emissions, confirming previous observations that soluble potassium is a good marker for vegetative burning.  相似文献   

20.
Agricultural wastes from orchards, grain fields, and range lands are burned each year in California as the most practical means of ridding the land of these wastes. In order to determine the relative contribution of the burning of such material to photochemical air pollution, the effluent from 1 23 fires of known weights of range brush, both dry and green, barley and rice stubble, and prunings from various fruit and nut trees were monitored in a special tower which provided an open burning situation. Analyses were made for total hydrocarbon, expressed as C, by flame ionization detection, and for 24 individual hydrocarbons by gas chromatography, as well as for CO and CO2 by infrared spectroscopy. A few analyses were made for oxides of nitrogen. These data, coupled with temperature and airflow measurements, allowed calculations to be made on pounds of effluent per ton of material burned and demonstrated that the emissions from agricultural burning are much less than those from the automobile, a principal source of such emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号