首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The U.S. Environmental Protection Agency in 1997 revised the 1-hr ozone (O3) National Ambient Air Quality Standard (NAAQS) to one based on an 8-hr average, resulting in potential nonattainment status for substantial portions of the eastern United States. The regulatory process provides for the development of a state implementation plan that includes a demonstration that the projected future O3 concentrations will be at or below the NAAQS based on photochemical modeling and analytical techniques.

In this study, four photochemical modeling systems, based on two photochemical models, Community Model for Air Quality and the Comprehensive Air Quality Model with extensions, and two emissions processing models, Sparse Matrix Optimization Kernel for Emissions and Emissions Modeling System, were applied to the eastern United States, with emphasis on the northeastern Ozone Transport Region in terms of their response to oxides of nitrogen and volatile organic carbon-focused controls on the estimated design values. With the 8-hr O3 NAAQS set as a bright-line test, it was found that a given area could be termed as being in or out of attainment of the NAAQS depending upon the modeling system. This suggests the need to provide an estimate of model-to-model uncertainty in the relative reduction factor (RRF) for a better understanding of the uncertainty in projecting the status of an area's attainment. Results indicate that the model-to-model differences considered in this study introduce an uncertainty of the future estimated design value of ~3–5 ppb.  相似文献   

2.
Vale Canada Limited owns and operates a large nickel smelting facility located in Sudbury, Ontario. This is a complex facility with many sources of SO2 emissions, including a mix of source types ranging from passive building roof vents to North America's tallest stack. In addition, as this facility performs batch operations, there is significant variability in the emission rates depending on the operations that are occurring. Although SO2 emission rates for many of the sources have been measured by source testing, the reliability of these emission rates has not been tested from a dispersion modeling perspective. This facility is a significant source of SO2 in the local region, making it critical that when modeling the emissions from this facility for regulatory or other purposes, that the resulting concentrations are representative of what would actually be measured or otherwise observed. To assess the accuracy of the modeling, a detailed analysis of modeled and monitored data for SO2 at the facility was performed. A mobile SO2 monitor sampled at five locations downwind of different source groups for different wind directions resulting in a total of 168 hr of valid data that could be used for the modeled to monitored results comparison. The facility was modeled in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model) using site-specific meteorological data such that the modeled periods coincided with the same times as the monitored events. In addition, great effort was invested into estimating the actual SO2 emission rates that would likely be occurring during each of the monitoring events. SO2 concentrations were modeled for receptors around each monitoring location so that the modeled data could be directly compared with the monitored data. The modeled and monitored concentrations were compared and showed that there were no systematic biases in the modeled concentrations.

Implications:

This paper is a case study of a Combined Analysis of Modelled and Monitored Data (CAMM), which is an approach promulgated within air quality regulations in the Province of Ontario, Canada. Although combining dispersion models and monitoring data to estimate or refine estimates of source emission rates is not a new technique, this study shows how, with a high degree of rigor in the design of the monitoring and filtering of the data, it can be applied to a large industrial facility, with a variety of emission sources. The comparison of modeled and monitored SO2 concentrations in this case study also provides an illustration of the AERMOD model performance for a large industrial complex with many sources, at short time scales in comparison with monitored data. Overall, this analysis demonstrated that the AERMOD model performed well.  相似文献   


3.
An evaluation of the steady-state dispersion model AERMOD was conducted to determine its accuracy at predicting hourly ground-level concentrations of sulfur dioxide (SO2) by comparing model-predicted concentrations to a full year of monitored SO2 data. The two study sites are comprised of three coal-fired electrical generating units (EGUs) located in southwest Indiana. The sites are characterized by tall, buoyant stacks, flat terrain, multiple SO2 monitors, and relatively isolated locations. AERMOD v12060 and AERMOD v12345 with BETA options were evaluated at each study site. For the six monitor–receptor pairs evaluated, AERMOD showed generally good agreement with monitor values for the hourly 99th percentile SO2 design value, with design value ratios that ranged from 0.92 to 1.99. AERMOD was within acceptable performance limits for the Robust Highest Concentration (RHC) statistic (RHC ratios ranged from 0.54 to 1.71) at all six monitors. Analysis of the top 5% of hourly concentrations at the six monitor–receptor sites, paired in time and space, indicated poor model performance in the upper concentration range. The amount of hourly model predicted data that was within a factor of 2 of observations at these higher concentrations ranged from 14 to 43% over the six sites. Analysis of subsets of data showed consistent overprediction during low wind speed and unstable meteorological conditions, and underprediction during stable, low wind conditions. Hourly paired comparisons represent a stringent measure of model performance; however, given the potential for application of hourly model predictions to the SO2 NAAQS design value, this may be appropriate. At these two sites, AERMOD v12345 BETA options do not improve model performance.

Implications:

A regulatory evaluation of AERMOD utilizing quantile-quantile (Q–Q) plots, the RHC statistic, and 99th percentile design value concentrations indicates that model performance is acceptable according to widely accepted regulatory performance limits. However, a scientific evaluation examining hourly paired monitor and model values at concentrations of interest indicates overprediction and underprediction bias that is outside of acceptable model performance measures. Overprediction of 1-hr SO2 concentrations by AERMOD presents major ramifications for state and local permitting authorities when establishing emission limits.  相似文献   


4.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

5.
A new probabilistic modeling environment is described which allows the explicit and quantitative representation of the uncertainties inherent in new environmental control processes for SO2 and NOx removal. Stochastic analyses provide additional insights into the uncertainties in process performance and cost not possible with conventional deterministic or sensitivity analysis. Applications of the probabilistic modeling framework are illustrated via an analysis of the performance and cost of the fluidized bed copper oxide process, an advanced technology for the control of SO2 and NOx emissions from coal-fired power plants. An engineering model of a conceptual commercial-scale system provides the basis for the analysis. The model also captures interactions between the power plant, the SO2/NOx removal process, and other components of the emission control system. Results of the analysis address payoffs from process design improvements; the dependence of system cost on process design conditions and the availability of byproduct markets; and the likelihood that the advanced process will yield cost savings relative to conventional technology. The implications of case study results for research planning and comparisons with alternative systems also are briefly discussed.  相似文献   

6.
Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation in the area. In this study, a dispersion study of NO2 and SO2 was conducted using the AERMOD model. The area-specific emission inventories of NOx and SO2 were prepared, including both stack and nonstack sources, and divided into 11 emission groups. Annual simulations were performed for the year 2006. Modeled concentrations were evaluated with observations. Underestimation of both pollutants was found, and stack emission estimates were scaled to improve the modeled results before quantifying relative roles of individual emission groups to ambient concentration over four selected impacted areas (two are residential and the others are highly industrialized). Two concentration measures (i.e., annual average area-wide concentration or AC, and area-wide robust highest concentration or AR) were used to aggregately represent mean and high-end concentrations for each individual area, respectively. For AC-NO2, on-road mobile emissions were found to be the largest contributor in the two residential areas (36–38% of total AC-NO2), while petrochemical-industry emissions play the most important role in the two industrialized areas (34–51%). For AR-NO2, biomass burning has the most influence in all impacted areas (>90%) except for one residential area where on-road mobile is the largest (75%). For AC-SO2, the petrochemical industry contributes most in all impacted areas (38–56%). For AR-SO2, the results vary. Since the petrochemical industry was often identified as the major contributor despite not being the largest emitter, air quality workers should pay special attention to this emission group when managing air quality for the MA.

Implications: Effective air quality management in Map Ta Phut Industrial Area, Thailand requires better understanding of how emissions from various sources contribute to the degradation of ambient air quality. Based on the dispersion study here, petrochemical industry was generally identified as the major contributor to ambient NO2 and SO2. By accounting for all stack and non-stack sources, on-road mobile emissions were found to be important in some particular areas.  相似文献   

7.
Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January–February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NOx, NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NOx emissions. However, a decrease in NOx will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision.

Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NOx limited. Therefore, NOx emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.  相似文献   


8.
The performance of the AERMOD air dispersion model under low wind speed conditions, especially for applications with only one level of meteorological data and no direct turbulence measurements or vertical temperature gradient observations, is the focus of this study. The analysis documented in this paper addresses evaluations for low wind conditions involving tall stack releases for which multiple years of concurrent emissions, meteorological data, and monitoring data are available. AERMOD was tested on two field-study databases involving several SO2 monitors and hourly emissions data that had sub-hourly meteorological data (e.g., 10-min averages) available using several technical options: default mode, with various low wind speed beta options, and using the available sub-hourly meteorological data. These field study databases included (1) Mercer County, a North Dakota database featuring five SO2 monitors within 10 km of the Dakota Gasification Company’s plant and the Antelope Valley Station power plant in an area of both flat and elevated terrain, and (2) a flat-terrain setting database with four SO2 monitors within 6 km of the Gibson Generating Station in southwest Indiana. Both sites featured regionally representative 10-m meteorological databases, with no significant terrain obstacles between the meteorological site and the emission sources. The low wind beta options show improvement in model performance helping to reduce some of the overprediction biases currently present in AERMOD when run with regulatory default options. The overall findings with the low wind speed testing on these tall stack field-study databases indicate that AERMOD low wind speed options have a minor effect for flat terrain locations, but can have a significant effect for elevated terrain locations. The performance of AERMOD using low wind speed options leads to improved consistency of meteorological conditions associated with the highest observed and predicted concentration events. The available sub-hourly modeling results using the Sub-Hourly AERMOD Run Procedure (SHARP) are relatively unbiased and show that this alternative approach should be seriously considered to address situations dominated by low-wind meander conditions.

Implications: AERMOD was evaluated with two tall stack databases (in North Dakota and Indiana) in areas of both flat and elevated terrain. AERMOD cases included the regulatory default mode, low wind speed beta options, and use of the Sub-Hourly AERMOD Run Procedure (SHARP). The low wind beta options show improvement in model performance (especially in higher terrain areas), helping to reduce some of the overprediction biases currently present in regulatory default AERMOD. The SHARP results are relatively unbiased and show that this approach should be seriously considered to address situations dominated by low-wind meander conditions.  相似文献   

9.
ABSTRACT

This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations.  相似文献   

10.
ABSTRACT

A case study was conducted to evaluate the SO2 emission reduction in a power plant in Central Mexico, as a result of the shifting of fuel oil to natural gas. Emissions of criteria pollutants, greenhouse gases, organic and inorganic toxics were estimated based on a 2010 report of hourly fuel oil consumption at the “Francisco Pérez Ríos” power plant in Tula, Mexico. For SO2, the dispersion of these emissions was assessed with the CALPUFF dispersion model. Emissions reductions of > 99% for SO2, PM and Pb, as well as reductions >50% for organic and inorganic toxics were observed when simulating the use of natural gas. Maximum annual (993 µg/m3) and monthly average SO2 concentrations were simulated during the cold-dry period (152–1063 µg/m3), and warm-dry period (239–432 µg/m3). Dispersion model results and those from Mexico City’s air quality forecasting system showed that SO2 emissions from the power plant affect the north of Mexico City in the cold-dry period. The evaluation of model estimates with 24 hr SO2 measured concentrations at Tepeji del Rio suggests that the combination of observations and dispersion models are useful in assessing the reduction of SO2 emissions due to shifting in fuels. Being SO2 a major precursor of acid rain, high transported sulfate concentrations are of concern and low pH values have been reported in the south of Mexico City, indicating that secondary SO2 products emitted in the power plant can be transported to Mexico City under specific atmospheric conditions.

Implications: Although the surroundings of a power plant located north of Mexico City receives most of the direct SO2 impact from fuel oil emissions, the plume is dispersed and advected to the Mexico City metropolitan area, where its secondary products may cause acid rain. The use of cleaner fuels may assure significant SO2 reductions in the plant emissions and consequent acid rain presence in nearby populated cities and should be compulsory in critical areas to comply with annual emission limits and health standards.  相似文献   

11.
Contribution of pollution from different types of sources in Jamshedpur, the steel city of India, has been estimated in winter 1993 using two approaches in order to delineate and prioritize air quality management strategies for the development of region in an environmental friendly manner. The first approach mainly aims at preparation of a comprehensive emission inventory and estimation of spatial distribution of pollution loads in terms of SO2 and NO2 from different types of industrial, domestic and vehicular sources in the region. The results indicate that industrial sources account for 77% and 68% of the total emissions of SO2 and NO2, respectively, in the region, whereas vehicular emissions contributed to about 28% of the total NO2 emissions. In the second approach, contribution of these sources to ambient air quality levels to which the people are exposed to, was assessed through air pollution dispersion modelling. Ambient concentration levels of SO2 and NO2 have been predicted in winter season using the ISCST3 model. The analysis indicates that emissions from industrial sources are responsible for more than 50% of the total SO2 and NO2 concentration levels. Vehicular activities contributed to about 40% of NO2 pollution and domestic fuel combustion contributed to about 38% of SO2 pollution. Predicted 24-h concentrations were compared with measured concentrations at 11 ambient air monitoring stations and good agreement was noted between the two values. In-depth zone-wise analysis of the above indicates that for effective air quality management, industrial source emissions should be given highest priority, followed by vehicular and domestic sources in Jamshedpur region.  相似文献   

12.
Sub-regional and sector level distribution of SO2 and NOx emissions inventories for India have been estimated for all the 466 Indian districts using base data for years 1990 and 1995. Although, national level emissions provide general guidelines for assessing mitigation alternatives, but significant regional and sectoral variability exist in Indian emissions. Districts reasonably capture this variability to a fine grid as 80% of these districts are smaller than 1°×1° resolution with 60% being smaller than even 1/2°×1/2°. Moreover, districts in India have well-established administrative and institutional mechanisms that would be useful for implementing and monitoring measures. District level emission estimates thus offer a finer regional scale inventory covering the combined interests of the scientific community and policy makers. The inventory assessment methodology adopted is similar to that prescribed by the Intergovernmental Panel on Climate Change (IPCC) for greenhouse gas (GHG) emissions. The sectoral decomposition at district level includes emissions from fossil fuel combustion, non-energy emissions from industrial activities and agriculture. Total SO2 and NOx emissions from India were 3542 and 2636 Gg, respectively (1990) and 4638 and 3462 Gg (1995) growing at annual rate of around 5.5%. The sectoral composition of SO2 emissions indicates a predominance of electric power generation sector (46%). Power and transport sector emissions equally dominate NOx emissions contributing nearly 30% each. However, majority of power plants are situated in predominantly rural districts while the latter are concentrated in large urban centers. Mitigation efforts for transport sector NOx emissions would therefore be higher. The district level analysis indicates diverse spatial distribution with the top 5% emitting districts contributing 46.5 and 33.3% of total national SO2 and NOx emissions, respectively. This skewed emission pattern, with a few districts, sectors and point sources emitting significant SO2 and NOx, offers mitigation flexibility to policy makers for cost-effective mitigation.  相似文献   

13.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   

14.
The U.S. Environmental Protection Agency in 1997 revised the 1-hr ozone (O3) National Ambient Air Quality Standard (NAAQS) to one based on an 8-hr average, resulting in potential nonattainment status for substantial portions of the eastern United States. The regulatory process provides for the development of a state implementation plan that includes a demonstration that the projected future O3 concentrations will be at or below the NAAQS based on photochemical modeling and analytical techniques. In this study, four photochemical modeling systems, based on two photochemical models, Community Model for Air Quality and the Comprehensive Air Quality Model with extensions, and two emissions processing models, Sparse Matrix Optimization Kernel for Emissions and Emissions Modeling System, were applied to the eastern United States, with emphasis on the northeastern Ozone Transport Region in terms of their response to oxides of nitrogen and volatile organic carbon-focused controls on the estimated design values. With the 8-hr O3 NAAQS set as a bright-line test, it was found that a given area could be termed as being in or out of attainment of the NAAQS depending upon the modeling system. This suggests the need to provide an estimate of model-to-model uncertainty in the relative reduction factor (RRF) for a better understanding of the uncertainty in projecting the status of an area's attainment. Results indicate that the model-to-model differences considered in this study introduce  相似文献   

15.
Abstract

Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46–86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.  相似文献   

16.
Under the 11th Five Year Plan (FYP, 2006–2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO2) controls is to achieve a total national emissions level of SO2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NOx) emissions control plan is currently under development and could be enforced during the 12th FYP (2011–2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO2 and NOx emission controls in China. Four emission scenarios — the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO2 control scenario, and the 2010 NOx control scenario—were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling.  相似文献   

17.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

18.
Two indicator pollutants, carbon monoxide (CO) for mobile source influence and sulfur dioxide (SO2) for stationary source influence, were used to estimate source-type contributions to ambient NO2 levels in a base year and to predict NO2 concentrations in a future year. For a specific source-receptor pair, the so-called influence coefficient of each of three source categories (mobile sources, power plants, and other stationary sources) was determined empirically from concurrent measurements of CO and SO2 concentrations at the receptor site and CO and SO2 emissions from each source category in the source area. Those coefficients, which are considered time invariant, were used in conjunction with the base year and future year NO x emission values to estimate source-type contribution to ambient NO2 levels at seven study sites selected from the Greater Los Angeles area for both the base year period, 1974 through 1976, and the future goal year of 1987 in which the air quality standards for NO2 are to be attained. The estimated NO2 air quality at the seven sites is found to meet the national annual standard of 5 pphm and over 99.9% of total hours, the California 1-hr NO2 standard of 25 pphm in 1987. The estimated power plant contributions to ambient NO2 levels are found to be considerably smaller than those to total NO x emissions in the area. Providing that reasonably complete air quality and emissions data are available, the present analysis method may prove to be a useful tool in evaluating source contributions to both short-term peak and long-term average NO2 concentrations for use in control strategy development.  相似文献   

19.
Abstract

Emission trading is a market‐based approach designed to improve the efficiency and economic viability of emission control programs; emission trading has typically been confined to trades among single pollutants. Interpollutant trading (IPT), as described in this work, allows for trades among emissions of different compounds that affect the same air quality end point, in this work, ambient ozone (O3) concentrations. Because emissions of different compounds impact air quality end points differently, weighting factors or trading ratios (tons of emissions of nitrogen oxides (NOx) equivalent to a ton of emissions of volatile organic compounds [VOCs]) must be developed to allow for IPT. In this work, IPT indices based on reductions in O3 concentrations and based on reductions in population exposures to O3 were developed and evaluated using a three‐dimensional gridded photochemical model for Austin, TX, a city currently on the cusp of nonattainment with the National Ambient Air Quality Standards for O3 concentrations averaged over 8 hr. Emissions of VOC and NOx from area and mobile sources in Austin are larger than emissions from point sources. The analysis indicated that mobile and area sources exhibited similar impacts. Trading ratios based on maximum O3 concentration or population exposure were similar. In contrast, the trading ratios did exhibit significant (more than a factor of two) day‐to‐day variability. Analysis of the air quality modeling indicated that the daily variability in trading ratios could be attributed to daily variations in both emissions and meteorology.  相似文献   

20.
In the present study, a modified approach was adopted to quantify the assimilative capacity (i.e., the maximum emission an area can take without violating the permissible pollutant standards) of a major industrial cluster (Manali, India) and to assess the effectiveness of adopted air pollution control measures at the region. Seasonal analysis of assimilative capacity was carried out corresponding to critical, high, medium, and low pollution levels to know the best and worst conditions for industrial operations. Bottom-up approach was employed to quantify sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (aerodynamic diameter <10 μm; PM10) emissions at a fine spatial resolution of 500 × 500 m2 in Manali industrial cluster. AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), an U.S. Environmental Protection Agency (EPA) regulatory model, was used for estimating assimilative capacity. Results indicated that 22.8 tonnes/day of SO2, 7.8 tonnes/day of NO2, and 7.1 tonnes/day of PM10 were emitted from the industries of Manali. The estimated assimilative capacities for SO2, NO2, and PM10 were found to be 16.05, 17.36, and 19.78 tonnes/day, respectively. It was observed that the current SO2 emissions were exceeding the estimated safe load by 6.7 tonnes/day, whereas PM10 and NO2 were within the safe limits. Seasonal analysis of assimilative capacity showed that post-monsoon had the lowest load-carrying capacity, followed by winter, summer, and monsoon seasons, and the allowable SO2 emissions during post-monsoon and winter seasons were found to be 35% and 26% lower, respectively, when compared with monsoon season.

Implications: The authors present a modified approach for quantitative estimation of assimilative capacity of a critically polluted Indian industrial cluster. The authors developed a geo-coded fine-resolution PM10, NO2, and SO2 emission inventory for Manali industrial area and further quantitatively estimated its season-wise assimilative capacities corresponding to various pollution levels. This quantitative representation of assimilative capacity (in terms of emissions), when compared with routine qualitative representation, provides better data for quantifying carrying capacity of an area. This information helps policy makers and regulatory authorities to develop an effective mitigation plan for air pollution abatement.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号