首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides X nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (Experiment 1) and during 1989 and 1990 (Experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In Experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season; then the plants were grown outdoors with ambient ozone in 1989. In Experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season; then the plants were grown outdoors with ambient ozone in 1990. Shallow wounds were made into the bark tissue and inoculated with either an aqueous suspension of conidia of Mycosphaerella populorum or sterile water on 1 and 2 September 1988 (Experiment 1) or 16 and 17 August 1989 (Experiment 2). In Experiment 1, wounds were inoculated either 0, 7, or 14 days after wounding. In Experiment 2, wounds were inoculated either 0, 3, or 6 days after wounding. Canker development was measured after harvest on 16 and 17 July 1989 (Experiment 1) and 28 May 1990 (Experiment 2). In both experiments, chronic exposure to ozone significantly increased the incidence of canker formation in inoculated wounds, and no cankers formed in wounds that received only sterile water. In Experiment 1, cankers formed only on plants inoculated the same day as wounding. No cankers formed on plants inoculated either 7 or 14 days after wounding. In Experiment 2, cankers formed on plants inoculated on the same day as wounding, and on a few plants inoculated 3 days after wounding. No cankers formed on plants inoculated 6 days after wounding. Additionally, in Experiment 2, exposure to increased concentrations of ozone caused a significantly higher number of plants to die during the subsequent winter. Analysis of partial correlation coefficients among plant growth and plant disease variables suggested that the observed ozone-induced increase in the susceptibility of the plants to disease was not mediated by alterations in plant growth.  相似文献   

2.
Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.  相似文献   

3.
Field symptoms typical of ozone injury have been observed on several conifer species in Great Smoky Mountains National Park, and tropospheric ozone levels in the Park can be high, suggesting that ozone may be causing growth impairment of these plants. The objective of this research was to test the ozone sensitivity of selected conifer species under controlled exposure conditions. Seedlings of three species of conifers, Table Mountain pine (Pinus pungens), Virginia pine (Pinus virginiana), and eastern hemlock (Tsuga canadensis), were exposed to various levels of ozone in open-top chambers for one to three seasons in Great Smoky Mountains National Park in Tennessee, USA. A combination of episodic profiles (1988) and modified ambient exposure regimes (1989-92) were used. Episodic profiles simulated an average 7-day period from a monitoring station in the Park. Treatments used in 1988 were: charcoal-filtered (CF), 1.0x ambient, 2.0x ambient, and ambient air-no chamber (AA). In 1989 a 1.5x ambient treatment was added, and in 1990, additional chambers were made available, allowing a 0.5x ambient treatment to be added. Height, diameter, and foliar injury were measured most years. Exposures were 3 years for Table Mountain pine (1988-90), 3 years for hemlock (1989-91), and 1 and 2 years for three different sets of Virginia pine (1990, 1990-91, and 1992). There were no significant (p<0.05) effects of ozone on any biomass fraction for any of the species, except for older needles in Table Mountain and Virginia pine, which decreased with ozone exposure. There were also no changes in biomass allocation patterns among species due to ozone exposure, except for Virginia pine in 1990, which showed an increase in the root:shoot ratio. There was foliar injury (chlorotic mottling) in the higher two treatments (1.0x and 2.0x for Table Mountain and 2.0x for Virginia pine), but high plant-to-plant variability obscured formal statistical significance in many cases. We conclude, at least for growth in the short-term, that seedlings of these three conifer species are insensitive to ambient and elevated levels of ozone, and that current levels of ozone in the Park are probably having minimal impacts on these particular species.  相似文献   

4.
Air quality standards are established to prevent or minimize the risk of adverse effects from air pollution to human health, vegetation, and materials. In order to develop standards which provide an adequate measure of protection to vegetation, it is necessary to define, in as precise terms as possible, the relationship between ambient air quality and the potential for adverse effects on vegetation. Based on recent evidence published in the literature, as well as retrospective studies using data from the National Crop Loss Assessment Network (NCLAN), cumulative indices can be used to describe exposures of ozone for predicting agricultural crop effects. However, the mathematical form of the standard that may be proposed to protect crops does not necessarily have to be of the same form as that used in the statistical or process oriented mathematical models that relate ambient ozone exposures with vegetation effects. This paper discusses the limitations associated with applying a simple statistic that may take the place of a more biologically meaningful exposure parameter. While the NCLAN data have been helpful in identifying indices that may be appropriate for establishing exposure-response relationships, the limitations associated with the NCLAN protocol need to be considered when attempting to apply these relationships in the establishment of a secondary national ambient air quality standard. The Weibull model derived from NCLAN experiments must demonstrate its generality and universal applicability. Furthermore, its predictive power must be tested using independent sets of field data.  相似文献   

5.
This paper provides results of ozone flux density measurements above a permanent grassland ecosystem as they relate to an establishment of air quality guidelines or standards. Using a resistance analogue, the product of zone concentration measured at a standard measurement height and the conductivity of the atmosphere reflect the maximum possible ozone flux density towards the envelope of the plants. In other words, this product can be regarded as the ozone exposure potential of the atmosphere for plants. It could be shown that ozone concentrations between 100 and 180 microg m(-3) are likely to have a great phytotoxic potential and are more important than concentrations greater than 180 microg m(-3). From the results presented one can deduce that the application of dose-response relationships based on chamber experiments to ambient conditions results in an overestimation of, for example, yield loses. Any guideline or standard has to take into account the influence of the atmospheric conductivity on the absorbed dose of ozone.  相似文献   

6.
Bioindicator plants for ambient ozone in Central and Eastern Europe   总被引:1,自引:0,他引:1  
Sixteen species of native detector plants for ambient ozone have been identified for use in Central and Eastern Europe. They include the forbs Alchemilla sp., Astrantia major, Centuarea nigra, Centauria scabiosa, Impatiens parviflora, Lapsana communis, Rumex acetosa and Senecio subalpinus; the shrubs Corylus avellana, Cornus sanguinea and Sambucus racemosa; the trees Alnus incana, Pinus cembra and Sorbus aucuparia; and the vines Humulus lupulus and Parthenocissus quinquefolia. Sensitivity to ozone and symptoms have been verified under controlled exposure conditions. Under these conditions, symptom incidence, intensity and appearance often changed with time after removal from exposure chambers. Ozone sensitivity for four species: Astrantia major, Centuarea nigra, C. scabiosa and Humulus lupulus are reported here for the first time. The other 12 species have also been confirmed by others in Western Europe. It is recommended that these detector bioindicator species be used in conjunction with ozone monitors and passive samplers so that injury symptoms incidence can be used to give biological significance to monitored ambient ozone data.  相似文献   

7.
The combination of stomatal-dependent ozone flux and total ascorbate level is currently presented as a correct indicator for determining the degree of sensitivity of plants to ozone. However, the large changes in carbon metabolism could play a central role in the strategy of the foliar cells in response to chronic ozone exposure, participating in the supply of reducing power and carbon skeletons for repair and detoxification, and modifying the stomatal mode of functioning. To reinforce the accuracy of the definition of the threshold for ozone risk assessment, it is proposed to also consider the redox pool (NAD(P)H), the ratio between carboxylases and the water use efficiency as indicators of the differential ozone tolerance of plants.  相似文献   

8.
The National Ambient Air Quality Standard (NAAQS) for ozone is based on occurrences of the maximum 8 h average ambient ozone concentration. However, biologists have recommended a cumulative ozone exposure parameter to protect vegetation. In this paper we propose a third alternative which uses quantifiable flux-based numerical parameters as a replacement for cumulative ambient parameters. Herein we discuss the concept of ozone flux as it relates to plant response and the NAAQS, and document information needed before a flux-based ozone NAAQS for vegetation can be implemented. Additional research is needed in techniques for determining plant uptake and in the quantification of plant defensive mechanisms to ozone. Models which include feedback mechanisms should be developed to relate ozone flux, loading, and detoxification with photosynthesis and plant productivity.  相似文献   

9.
Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation.  相似文献   

10.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

11.
Data from recent experiments at North Carolina State University and other locations provide a unique opportunity to study the effect of ambient ozone on the growth of clover. The data consist of hourly ozone measurements over a 140 day growing season at eight sites in the US, coupled with clover growth response data measured every 28 days. The objective is to model an indicator of clover growth as a function of ozone exposure. A common strategy for dealing with the numerous hourly ozone measurements is to reduce these to a single summary measurement, a so-called exposure metric, for the growth period of interest. However, the mean ozone value is not necessarily the best summarization, as it is widely believed that low levels of ozone have a negligible effect on growth, whereas peak ozone values are deleterious to plant growth. There are also suspected interactions with available sunlight, temperature and humidity. A number of exposure metrics have been proposed that reflect these beliefs by assigning different weights to ozone values according to magnitude, time of day, temperature and humidity. These weighting schemes generally depend on parameters that have, to date, been subjectively determined. We propose a statistical approach based on profile likelihoods to estimate the parameters in these exposure metrics.  相似文献   

12.
This study was conducted to investigate the temporal and spatial distributions, compositions, and determinants of ambient aeroallergens in Taipei, Taiwan, a subtropical metropolis. We monitored ambient culturable fungi in Shin-Jhuang City, an urban area, and Shi-Men Township, a rural area, in Taipei metropolis from 2003 to 2004. We collected ambient fungi in the last week of every month during the study period, using duplicate Burkard portable samplers and Malt Extract Agar. The median concentration of total fungi was 1339 colony-forming units m−3 of air over the study period. The most prevalent fungi were non-sporulating fungi, Cladosporium, Penicillium, Curvularia and Aspergillus at both sites. Airborne fungal concentrations and diversity of fungal species were generally higher in urban than in rural areas. Most fungal taxa had significant seasonal variations, with higher levels in summer. Multivariate analyses showed that the levels of ambient fungi were associated positively with temperature, but negatively with ozone and several other air pollutants. Relative humidity also had a significant non-linear relationship with ambient fungal levels. We concluded that the concentrations and the compositions of ambient fungi are diverse in urban and rural areas in the subtropical region. High ambient fungal levels were related to an urban environment and environmental conditions of high temperature and low ozone levels.  相似文献   

13.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

14.
Numerous ozone exposure statistics were calculated using hourly ozone data from crop yield loss experiments previously conducted for alfalfa, fresh market and processing tomatoes, cotton, and dry beans in an ambient ozone gradient near Los Angeles, California. Exposure statistics examined included peak (maximum daily hourly) and mean concentrations above specific threshold levels, and concentrations during specific time periods of the day. Peak and mean statistics weighted for ozone concentration and time period statistics weighted for hour of the day were also determined. Polynomial regression analysis was used to relate each of 163 ozone statistics to crop yield. Performance of the various statistics was rated by comparing residual mean square (RMS) values. The analyses demonstrated that no single statistic was best for all crop species. Ozone statistics with a threshold level performed well for most crops, but optimum threshold level was dependent upon crop species and varied with the particular statistics calculated. The data indicated that daily hours of exposure above a critical high-concentration threshold related well to crop yield for alfalfa, market tomatoes, and dry beans. The best statistic for cotton yield was an average of all daily peak ozone concentrations. Several different types of ozone statistics performed similarly for processing tomatoes. These analyses suggest that several ozone summary statistics should be examined in assessing the relationship of ambient ozone exposure to crop yield. Where no clear statistical preference is indicated among several statistics, those most biologically relevant should be selected.  相似文献   

15.
The use of gaseous ozone as a fungicide to preserve stored barley was studied. The effects of the following operating parameters on the fungicidal efficacy of ozone were examined: 1) the applied ozone dose, 2) ozonation time, 3) water activity of barley, and 4) temperature of barley. The effect of ozonation on germination of barley was also investigated. The experimental results showed that ozone was very effective in inactivation of fungi associated with the barley regardless of whether the fungi were in the forms of spores or mycelia. However, the mycelia were less resistant to ozone. With 5 minutes of ozonation, 96% of inactivation were achieved for spores as well as for mixtures of spores and small amount of mycelia by applying 0.16 and 0.10 mg of ozone/(g barley) x min, respectively. In addition, for sealed storage silos, inactivation of fungi continued when the ozone-containing gas was held inside the silos following a continuous ozone supply. The experimental results also revealed that increases in water activity and temperature of barley enhanced the fungicidal efficacy of ozone. Results of this study also indicated that the inactivation processes could be controlled by simply monitoring the exit ozone from the reactor instead of performing the time-consuming microbial examination. This finding would make the application of ozone in the preservation of cereal grains easier, simpler, and more practically applicable. The experimental results demonstrated that although ozonation above certain strength may reduce barley germination, inactivation of fungi was achieved with ozonation strengths far below the critical point.  相似文献   

16.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

17.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

18.
Forty clones of Betula pendula and 6 clones of Betula pubescens, originating from southern and central Finland, were ranked in order of ozone sensitivity according to visible injuries, growth and leaf senescense under low ozone exposure. The plants were fumigated in natural climatic conditions using an open-air exposure system during two growing seasons. Control plants were grown under ambient air, and the elevated-ozone exposures were 1.6x the ambient in 1994 and 1.7x the ambient in 1995. The differences in ozone sensitivity among clones were large. Ozone tolerance was related to thicker leaves and higher stomatal density as compared to sensitive clones. Ultrastructural ozone-induced symptoms were found in chloroplasts of sensitive clones. Increased number of visibly injured leaves on fumigated plants was correlated with reduced leaf formation, foliage area, shoot dry wt and number of stomata, and increased yellowing of leaves. The results suggest that a considerable proportion of birch trees, showing high sensitivity to ozone, are at risk if ambient ozone exposures increase.  相似文献   

19.
Ethylenediurea (EDU) has been widely used to prevent ozone (O3) injury and crop losses in crop plants and growth reductions in forest trees. Successful use requires establishing a dose/response curve for EDU and the proposed plant in the absence of O3 and in the presence of O3 before initiating multiple applications to prevent O3 injury. EDU can be used to verify foliar O3 symptoms in the field, and to screen plants for sensitivity to O3 under ambient conditions. Despite considerable research, the mode of action of EDU remains elusive. Additional research on the mode of action of EDU in suppressing O3 injury in plants may also be helpful in understanding the mode of action of O3 in causing injury in plants.  相似文献   

20.
Foliar applications of ethylenediurea (abbreviated as EDU) were made at 0, 150, 300 or 450 ppm to field-grown rice and wheat in the Yangtze Delta in China. Rice and wheat responded differently to ambient ozone and EDU applications. For wheat, some growth characteristics, such as yield, seed number per plant, seed set rate and harvest index, increased significantly at 300 ppm EDU treatment, while for rice no parameters measured were statistically different regarding EDU application. The reason may be that the wheat cultivar used may be more sensitive to ozone than the rice cultivar. EDU was effective in demonstrating ozone effects on the wheat cultivar, but not on the rice cultivar. Cultivar sensitivity might be an important consideration when assessing the effects of ambient ozone on plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号