首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bisphenol A (BPA) and nonylphenol (NP) were treated with manganese peroxidase (MnP) and laccase prepared from the culture of lignin-degrading fungi. Laccase in the presence of 1-hydroxybenzotriazole (HBT), the so-called laccase-mediator system, was also applied to remove the estrogenic activity. Both chemicals disappeared in the reaction mixture within a 1-h treatment with MnP but the estrogenic activities of BPA and NP still remained 40% and 60% in the reaction mixtures after a 1-h and a 3-h treatment, respectively. Extension of the treatment time to 12 h completed the removal of estrogenic activities of BPA and NP. The laccase has less ability to remove these activities than MnP, but the laccase-HBT system was able to remove the activities in 6 h. A gel permeation chromatography (GPC) analysis revealed that main reaction products of BPA and NP may be oligomers formed by the action of enzymes. Enzymatic treatments extended to 48 h did not regenerate the estrogenic activities, suggesting that the ligninolytic enzymes are effective for the removal of the estrogenic activities of BPA and NP.  相似文献   

2.
Kim KB  Seo KW  Kim YJ  Park M  Park CW  Kim PY  Kim JI  Lee SH 《Chemosphere》2003,50(9):1167-1173
In this study, we tested phenolic compounds such as bisphenol A (BPA), 4-nonylphenol (NP), 4-octylphenol (OP) and 4-propylphenol (PP) by using glucose-6-phosphate dehydrogenase (G6PD) in estrogen sensitive human breast cancer cells (MCF-7 cells) and glutathione peroxidase (GPx) in female immature Sprague-Dawley (SD) rats. This study was designed to investigate whether phenolic compounds have estrogenic effects in these useful screening methods for endocrine disruptors. We chose 6 h as the incubation period for the G6PD assay through a preliminary experiment using 17beta-estradiol (E2). Above the concentration of 1 x 10(-8) M, BPA significantly increased the G6PD activity in a concentration-dependent manner, relative to the control. NP (over the concentration of 1 x 10(-9) M) also enhanced the G6PD activity by about 1.8 times that of the control. OP produced weaker effects on G6PD than NP, and showed a tendency to increase the G6PD activity. PP did not affect the G6PD activity. These results show that BPA and NP have the effect of enhancing G6PD activities in MCF-7 cells. In the in vivo GPx assay, both BPA and E2 significantly increased the uterus wet weights and dramatically enhanced uterine GPx activities in immature female rats in a dose-dependent manner. Treatment with NP (500 mg/kg/day) increased significantly both the uterine GPx activity and the uterus wet weights in immature female rats. OP (500 mg/kg/day) also caused a significant increase in uterine GPx activity, but had no effect on the uterus wet weights. This finding indicates that the change in uterine GPx activities could be a more sensitive parameter than that of uterus wet weights in immature rats. This study implies that phenolic compounds have a weak estrogenic effects.  相似文献   

3.
Bisphenol A (BPA) and nonylphenols (NP) are of major concern to public health due to their high potential for human exposure and to their demonstrated toxicity (endocrine disruptor effect). A limited number of studies have shown that BPA and NP are present in drinking water. The chlorinated derivatives that may be formed during the chlorination step in drinking water treatment plants (DWTP) exhibit a higher level of estrogenic activity than their parent compounds. The aim of this study was to investigate BPA, 353NP, and their chlorinated derivative concentrations using an accurate and reproducible method of quantification. This method was applied to both surface and treated water samples from eight French DWTPs producing from surface water. Solid-phase extraction followed by liquid chromatography?Ctandem mass spectrometry was developed in order to quantify target compounds from water samples. The limits of detection ranged from 0.3 to 2.3?ng/L for BPA and chlorinated BPA and from 1.4 to 63.0?ng/L for 353NP and chlorinated 353NP. BPA and 353NP were found in most analyzed water samples, at a level ranging from 2.0 to 29.7?ng/L and from 0 to 124.9?ng/L, respectively. In most of DWTPs a decrease of BPA and 353NP was observed between surface water and treated water (36.6 to 78.9?% and 2.2 to 100.0?% for BPA and 353NP, respectively). Neither chlorinated BPA nor chlorinated 353NP was detected. Even though BPA and 353NP have been largely removed in the DWTPs studied, they have not been completely eliminated, and drinking water may consequently remain a source of human exposure.  相似文献   

4.

Purpose

The presence of four phenolic endocrine disrupting compounds (EDCs: nonylphenol [NP], NP monoethoxylate[NP1EO], bisphenol A [BPA], triclosan, [TCS]) and four nonsteroidal anti-inflammatory drugs (NSAIDs: ibuprofen[IBF], ketoprofen [KFN], naproxen [NPX], diclofenac [DCF]) in a Greek river receiving treated municipal wastewater was investigated in this study.

Methods

Samples were taken from four different points of the river and from the outlet of a sewage treatment plant (STP) during six sampling campaigns, and they were analyzed using gas chromatography?Cmass spectrometry.

Results

According to the results, EDCs were detected in almost all samples, whereas NSAIDs were detected mainly in wastewater and in the part of the river that receives wastewater from the STP. Among the target compounds, the highest mean concentrations in the river were detected for NP (1,345?ng?L?1) and DCF (432?ng?L?1). Calculation of daily loads of the target compounds showed that STP seems to be the major source of NSAIDs to the river, whereas other sources contribute significantly to the occurrence of EDCs. The environmental risk due to the presence of target compounds in river water was estimated, calculating risk quotients for different aquatic organisms (algae, daphnids, and fish). Results denoted the possible threat for the aquatic environment due to the presence of NP and TCS in the river.  相似文献   

5.
Concentrations of aqueous-phase nonylphenol (NP), a well-known endocrine-disrupting chemical, are shown to be reduced effectively via reaction with lignin peroxidase (LiP) or horseradish peroxidase (HRP) and hydrogen peroxide. We systematically assessed their reaction efficiencies at varying conditions, and the results have confirmed that the catalytic performance of LiP toward NP was more efficient than that of HRP under experimental conditions. Mass spectrum analysis demonstrated that polymerization through radical–radical coupling mechanism was the pathway leading to NP transformation. Our molecular modeling with the assistance of ab initio suggested the coupling of NP likely proceeded via covalent bonding between two NP radicals at their unsubstituted carbons in phenolic rings. Data from acute immobilization tests with Daphnia confirm that NP toxicity is effectively eliminated by LiP/HRP-catalyzed NP removal. The findings in this study provide useful information for understanding LiP/HRP-mediated NP reactions, and comparison of enzymatic performance can present their advantages for up-scale applications in water/wastewater treatment.  相似文献   

6.
- DOI: http://dx.doi.org/10.1065/espr2006.01.295 Background Many organic micropollutants occur at trace concentrations in municipal wastewater effluents and in the aquatic environment. Some of these xenobiotic chemicals can be considered as 'emerging' contaminants and some are suspect to have endocrine disrupting effects. Among the latter are nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), which deserve special attention due to their ubiquitous occurrence in the aquatic environment. The complexing agents benzotriazole (BT) and tolyltriazole (TT) are applied as anticorrosive agents (e.g. in cooling and hydraulic fluids, in antifreezing fluids, in aircraft deicing fluids, in dish washing liquids for silver protection), as antifogging agents and as intermediates for the synthesis of various chemicals. The environmental occurrence of NP and OP is caused by the fact that they are intermediate products (metabolites) in the biodegradation of alkylphenol polyethoxylate surfactants. BPA is globally used for the production of polycarbonate and epoxy resins. Methods BT, TT, NP, OP and BPA were quantitatively determined in municipal wastewater effluents in Switzerland and in the Glatt River. The analytes were enriched by solid-phase enrichment. BT and TT were determined underivatized by electrospray LC/tandem MS. Reversed-phase LC was performed on octylsilica columns with isocratic water/methanol elution. Multiple reaction monitoring of the positive ions provided selective and sensitive detection for reliable quantifications. NP, OP and BPA were determined by GC/MS after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide. Results and Discussion BT and TT concentrations in primary and secondary effluents of municipal wastewater treatment plants varied from below 10 to 100 μg/L. The ranges of the concentrations in the Glatt River in ng/L were 636–3,690 for BT, 122–628 for TT, 68–326 for NP, 6–22 for OP and 9–76 for BPA. The corresponding mass flows in g/d were 93–1,870 for BT, 18–360 for TT, 24–183 for NP, 1–16 for OP and 2–72 for BPA. The concentrations and mass flows of NP in the River Glatt were drastically lower than the analogous values found 15 years ago. Thus, a substantially decreased environmental exposure can be observed due to the reduction of the use of alkyphenol polyethoxylate surfactants in Switzerland. The current concentrations of NP, OP and BPA are within the ranges reported for weakly impacted surface waters. Conclusion The investigated contaminants occur at quantitatively measurable but varying concentrations in municipal wastewaters and in the Glatt River reflecting their ubiquitous input into wastewaters and their different behaviour during biological wastewater treatment.  相似文献   

7.
Kawahata H  Ohta H  Inoue M  Suzuki A 《Chemosphere》2004,55(11):1519-1527
Certain chemicals possess the potential to modulate endocrine systems, and thereby interfere with reproduction and developmental processes in the wild. We analyzed endocrine disrupters nonylphenol (NP) and bisphenol A (BPA) levels at various sites in Okinawa and Ishigaki Islands, Japan. River-water samples showed undetectable to low concentrations of NP and BPA at most of the sites investigated. However, an appreciable amount of BPA was detected in sediments at one coral reef site. In addition, significant numbers of river sediment samples showed appreciable amounts of NP and BPA. Most of the sampling sites for this study are located within a distance of 1 km from the coral reefs, which are under influence of river-waters to a variable extent. Therefore, influence of endocrine disrupters may have already begun on adjacent coral reefs. Both endocrine disrupters were positively correlated with human population densities, but not with the contents of red soil generated by farm land reformation. Therefore, it is concluded that NP and BPA pollution is a consequence of human waste discharge, both domestic and industrial, and not by agricultural activities.  相似文献   

8.
Geens T  Neels H  Covaci A 《Chemosphere》2012,87(7):796-802
In this study, an analytical method was optimized for the determination of bisphenol-A (BPA), triclosan (TCS) and 4-n-nonylphenol (4n-NP), environmental contaminants with potential endocrine disruptive activities, in human tissues. The method consisted of a liquid extraction step, derivatization with pentafluorobenzoylchloride followed by a clean-up on acidified silica and detection with gas chromatography coupled with mass spectrometry (GC-ECNI/MS). Recoveries ranged between 92% and 102% with a precision below 5%. Limits of quantification ranged between 0.3-0.4 ng g−1, 0.045-0.06 ng g−1 and 0.003-0.004 ng g−1 for BPA, TCS and 4n-NP in different tissues, respectively. The method was applied for the determination of BPA, TCS and 4n-NP in paired adipose tissue, liver and brain samples from 11 individuals. BPA could be detected in almost all tissues, with the highest concentrations found in adipose tissue (mean 3.78 ng g−1), followed by liver (1.48 ng g−1) and brain (0.91 ng g−1). TCS showed the highest concentrations in liver (3.14 ng g−1), followed by adipose tissue (0.61 ng g−1), while it could be detected in only one brain sample. Levels of 4n-NP were much lower, mostly undetected, and therefore 4n-NP is considered of minor importance for human exposure. Despite the measurable concentrations in adipose tissue, these compounds seem to have a low bioaccumulation potential. The reported concentrations of free BPA in the various tissues are slight disagreement with pharmacokinetic models in humans and rats and therefore the possibility of external contamination with BPA during sample collection/storage cannot be ruled out.  相似文献   

9.
Jin X  Jiang G  Huang G  Liu J  Zhou Q 《Chemosphere》2004,56(11):1113-1119
The estrogenic pollutants 4-tert-octylphenol (OP), 4-nonylphenol (NP) and bisphenol A (BPA) were determined in surface water samples from the Haihe River, Tianjin, China. The analytes were extracted and concentrated from 300 ml acidified water samples by liquid–liquid extractions using dichloromethane, derivatized with trifluoroacetic anhydride, and quantified by gas chromatography–mass spectrometry (GC–MS) with selected ion monitoring (SIM). Among the samples collected from 14 sampling sites, only one sample was found to have a relatively high concentration of BPA (8.30 μg l−1) and NP (0.55 μg l−1). The concentrations of OP, NP and BPA in the other samples were in the range of 18.0–20.2, 106–296 and 19.1–106 ng l−1, respectively. Recoveries for OP, NP and BPA in the spiked water samples were all over 80%.  相似文献   

10.
壬基酚聚氧乙烯醚在印染废水处理工艺中的去除研究   总被引:1,自引:0,他引:1  
为减少印染助剂壬基酚聚氧乙烯醚(nonylphenol ethoxylates,NPEO)及其降解产物壬基酚(nonylphenol,NP)随印染废水进入水体造成的不利环境影响,对2种常规印染废水处理净水工艺处理含NPEO的模拟印染废水效率开展了研究。研究发现,结合厌氧水解和曝气氧化的生物处理工艺能迅速地将废水中NPEO去除,去除率达到90%以上,但排水中残余一定含量的NP、短链NPEO和短链壬基酚聚氧乙烯醚酸酯(nonylphenol polyethoxycarboxylate,NPEC),在减少排水中NP、短链NPEO和短链NPEC浓度方面,接触氧化法比活性污泥法效果更好。排水中的NP和短链NPEO来自厌氧水解阶段长链NPEO的降解;减少排水中NP、短链NPEO需要减少厌氧水解阶段产生的短链NPEO。  相似文献   

11.
Sajiki J  Yonekubo J 《Chemosphere》2002,46(2):345-354
In this study, (1) change in bisphenol-A (BPA) leached from polycarbonate (PC) tube to water samples at 37 degrees C, (2) effect of reactive oxygen species (ROS) produced by Fenton reaction on BPA recovery and thiobarbituric acid (TBA) value with or without generally existing environmental substances such as alcohol, lipids and NaCl, were investigated. Amounts of BPA leached from PC tube to water samples containing lipids possessing unsaturated fatty acid with high TBA values were significantly lower than the amount of BPA to water only, and addition of NaCl to lipid containing water further decreased BPA concentration. The result indicates that BPA could be degraded by lipoperoxides formed by auto-oxidation of lipid, and NaCl plays an important role in BPA degradation. In the presence of ROS, BPA recovery was the lowest in water and addition of EtOH increased in both BPA recovery and TBA value, suggesting that EtOH could play a role as scavenger of ROS on the oxidative BPA degradation. Furthermore, the higher the concentration of lipid and/or NaCl, the lower the BPA recovery and TBA value. Physiologically and environmentally important concentrations of NaCl could enhance oxidative degradation of BPA in the presence of ROS.  相似文献   

12.
Elimination of alkylphenol ethoxylates (APEO) and their degradation products (alkylphenols and alkylphenoxy carboxylates), as well as linear alkylbenzene sulfonates (LAS) and coconut diethanol amides (CDEA), was studied in a pilot plant membrane bioreactor (MBR) working in parallel to a full-scale wastewater treatment plant (WWTP) using conventional activated sludge (CAS). In the CAS system 87% of parent long ethoxy chain NPEOs were eliminated, but their decomposition yielded persistent acidic and neutral metabolites which were poorly removed. The elimination of short ethoxy chain NPEOs (NP(1)EO and NP(2)EO) averaged 50%, whereas nonylphenoxy carboxylates (NPECs) showed an increase in concentrations with respect to the ones measured in influent samples. Nonylphenol (NP) was the only nonylphenolic compound efficiently removed (96%) in the CAS treatment. On the other hand, MBR showed good performance in removing nonylphenolic compounds with an overall elimination of 94% for the total pool of NPEO derived compounds (in comparison of 54%-overall elimination in the CAS). The elimination of individual compounds in the MBR was as follows: 97% for parent, long ethoxy chain NPEOs, 90% for short ethoxy chain NPEOs, 73% for NPECs, and 96% for NP. Consequently, the residual concentrations were in the low mug/l level or below it. LAS and CDEA showed similar elimination in the both wastewater treatment systems that were investigated, and no significant differences were observed between the two treatment processes. Nevertheless, for all studied compounds the MBR effluent concentrations were consistently lower and independent of the influent concentrations. Additionally, MBR effluent quality in terms of chemical oxygen demand (COD), NH(4)(+) concentration and total suspended solids (TSS) was always superior to the ones of the CAS and also independent of the influent quality, which demonstrates high potential of MBRs in the treatment of municipal wastewaters.  相似文献   

13.
The endocrine disruptor activity of styrene in humans and other vertebrates appears to be negligible. However, offspring numbers were reduced in Ceriodaphnia dubia bred in polystyrene cups. Styrene dimers and trimers were found to be eluted from the polystyrene cups by hexane and methanol with gas chromatography-mass spectrometry. Styrene dimers and trimers at concentrations of 0.04-1.7 microg/l affected C. dubia fertility (25% reduction after seven days), suggesting that styrenes have the potential to impair crustacean populations in the aquatic environment.  相似文献   

14.
Pharmaceuticals and personal care products (PPCPs) are one class of the most urgent emerging contaminants, which have drawn much public and scientific concern due to widespread contamination in aquatic environment. Most studies on the environmental fate and behavior of PPCPs have focused on nonsteroidal anti-inflammatory drugs. Some other compounds with high concentrations were less mentioned. In this study, sorption and degradation of five selected PPCPs, including bisphenol A (BPA), carbamazepine (CBZ), gemfibrozil (GFB), octylphenol (OP), and triclosan (TCS) have been investigated using three different soils. Sorption isotherms of all tested PPCPs in soils were well described by Freundlich equation. TCS and OP showed moderate to strong sorption, while the sorption of GFB and CBZ in soils was negligible. Degradation of PPCPs in three soils was generally fitted first-order exponential decay model, with half-lives (t 1/2) varying from 9.8 to 39.1 days. Sterilization could prolong the t 1/2 of PPCPs in soil, indicating that microbial activity played an important role in the degradation of these chemicals in soils. Degradation of PPCPs in soils was also influenced by the soil organic carbon (f oc) contents. Results from our data show that sorption to the soils varied among the different PPCPs, and their sorption affinity on soil followed the order of TCS > OP > BPA > GFB > CBZ. The degradation of the selected PPCPs in soil was influenced by the microbial activity and soil type. The poor sorption and relative persistence of CBZ suggest that it may pose a high leaching risk for groundwater contamination when recycled for irrigation.  相似文献   

15.
This paper investigated some selected estrogenic compounds (4-t-octylphenol: 4-t-OP; 4-nonylphenols: 4-NP; bisphenol-A: BPA; diethylstilbestrol: DES; estrone: E1; 17β-estradiol: E2; 17α-Ethinylestradiol: EE2; triclosan: TCS) and estrogenicity in the Liao River system using the combined chemical and in vitro yeast screen bioassay and assessed their ecological risks to aquatic organisms. The estrogenic compounds 4-t-OP, 4-NP, BPA, E1, E2 and TCS were detected in most of the samples, with their concentrations up to 52.1 2065.7, 755.6, 55.8, 7.4 and 81.3 ng/L in water, and up to 8.6, 558.4, 33.8, 7.9, <LOQ and 33.9 ng/g in sediment, respectively. However, DES and EE2 were not detected in the Liao River. The estrogen equivalents (EEQ) of the water and sediment samples were also measured by the bioassay. High estrogenic risks to aquatic organisms were found in the river sections of metropolitan areas and the lower reach of the river system.  相似文献   

16.
利用气相沿面放电—活性炭纤维(ACF)吸附(简称放电—吸附)联合处理含双酚A(BPA)废水,探讨了联合处理对BPA的降解效果,并通过处理过程中O3利用率变化以及处理前后ACF的表观状态变化分析了反应的作用机制。结果表明,放电—吸附联合处理相比单独放电和单独ACF吸附能显著提高BPA的降解率;在一定范围内,加大放电电压能提高放电—吸附联合处理的BPA降解效果,但放电电压超过一定值后,放电产生的O3量进一步增多,对ACF表面的结构破坏作用增加,反而导致BPA的降解效果降低,本研究较佳的放电电压为8.5kV;扫描电镜分析结果表明,经放电—吸附联合处理后,ACF表面出现大量的孔道,提高了表面的BPA富集浓度,同时也增加反应的活性位点;傅里叶变换红外光谱分析结果表明,联合处理后ACF表面的C—O、C=C、O—H等官能团都有所减少,可能是联合处理过程中O3等活性物质与ACF表面的这些还原性官能团发生了反应,诱导O3分解出了更多的自由基,从而促进了BPA的降解。  相似文献   

17.
In this study, (1) change in the concentration of bisphenol A (BPA) leached from polycarbonate (PC) tube to control water (BPA free), seawater and river water at 20 and 37 degrees C as a function of time, (2) the fate of BPA caused by addition of H(2)O(2) and Fe(3+) to seawater containing BPA leached from PC tube were assessed. BPA leached from PC tube to all water samples increased with the ascendant of temperature and with the passage of time. The BPA leaching velocity in seawater was the fastest in three samples (11 ng/day for seawater, 4.8 ng/day for river water 0.8 ng/day for control water at 37 degrees C).BPA leaching velocity from PC tube was significantly high at pH 8 (50 mM Na(2)HPO(4)) and increased dose-dependently. There was no difference in the velocity of BPA among the 50 mM phosphate-buffers at pH 6.5, 7.0 and 7.5. BPA was leached three times higher by addition of Na(+) than K(+). However, the higher the K(+) concentration, the larger the BPA leached from PC tube. Na(+) mixed with PO(4)(-) was effective on BPA leaching from PC tube, but not with SO(4)(-) or Cl(-). The results suggested that BPA leaching from PC tube would be attributed to the concentration of bibasic phosphate such as Na(2)HPO(4) and K(2)HPO(4) in water samples. BPA was degraded in both control water and seawater in the presence of radical oxygen species, but the degradation rate was lower in seawater than in control water, suggesting that anti-oxidative system exists in seawater. Neo-synthesized substance in both control water and seawater in the presence of reactive oxygen species was identified as BPA-quinone by LC-MS.  相似文献   

18.
A more detailed characterization of particulate organic matter in wastewater streams is needed to improve solid-liquid separation and biological processes for wastewater treatment. The objective of this paper was to evaluate particle size distributions and the associated chemical composition for municipal, industrial, and agricultural waste streams. Most of the organic matter in these wastewaters was larger than a molecular weight of 10(3) amu and therefore would require extracellular hydrolysis before any bacterial metabolism. Particle size distributions were significantly different for the studied waste streams. In municipal wastewater, the organic matter was evenly distributed in all eight size fractions ranging from 10(3) amu up to 63 microm. The industrial and agricultural wastewaters, however, contained mainly soluble organic matter (<10(3) amu) and larger particles (>1.2 microm for the industrial and >10 microm for the agricultural waste) leaving a gap in the size range of large macromolecules and colloids. The relative protein and carbohydrate concentrations varied for the different size fractions compared to the measured chemical oxygen demand (COD) in the corresponding size fraction. Thus, the design of the solid-liquid separation at a treatment plant could be used to purposefully modify the overall chemical composition of the organic matter before further biological treatment. Particle size distributions will influence design and operation of biological nutrient removal processes such as denitrification or biological phosphorus removal that may be carbon limited if a large fraction of the organic matter is composed of large particles with slow hydrolysis rates. Measured particle size distributions for the different waste streams in this study (municipal, industrial, agricultural) were significantly different requiring specific approaches for treatment plant design.  相似文献   

19.
Kang JH  Kondo F 《Chemosphere》2002,49(5):493-498
Total 15 surface river waters were collected from thirteen different rivers to investigate a relationship of bacterial counts and temperature to the degradation of bisphenol A (BPA). Autoclaved and non-autoclaved river water samples were spiked with 0.2 mg/l BPA. The spiked samples were placed at temperatures of 4, 20, and 30 degrees C and analyzed by high performance liquid chromatography. BPA was degraded at all temperatures in the non-autoclaved samples. However, BPA in the autoclaved samples was not changed at all temperatures for 20 d. These results show that the primary factor of BPA degradation in river water is bacteria. Moreover, three groups [group A (> 10000 CFU/ml), group B (2000-10000 CFU/ml), and group C (< 2000 CFU/ml)], were made on the basis of bacterial counts of the samples. Half-lives for BPA degradation in groups A, B, and C were 2, 3, and 6 d at 30 degrees C and were 4, 5, and 7 d at 20 degrees C, respectively. But at 4 degrees C, the loss of BPA was about 40%, 20%, and 10% in groups A, B, and C for 20 d, respectively. Bacterial counts exerted an influence on BPA degradation in river water with temperature. Our results also show that BPA-degrading bacteria are widely distributed in river waters.  相似文献   

20.
Zhu FD  Choo KH  Chang HS  Lee B 《Chemosphere》2012,87(8):857-864
The fate of endocrine disrupting chemicals (EDCs) in natural and engineered systems is complicated due to their interactions with various water constituents. This study investigated the interaction of bisphenol A (BPA) with dissolved organic matter (DOM) and colloids present in surface water and secondary effluent as well as its adsorptive removal by powdered activated carbons. The solid phase micro-extraction (SPME) method followed by thermal desorption and gas chromatography-mass spectrometry (GC-MS) was utilized for determining the distribution of BPA molecules in water. The BPA removal by SPME decreased with the increased DOM content, where the formation of BPA-DOM complexes in an aqueous matrix was responsible for the reduced extraction of BPA. Colloidal particles in water samples sorbed BPA leading to the marked reduction of liquid phase BPA. BPA-DOM complexes had a negative impact on the adsorptive removal of BPA by powered activated carbons. The complex formation was characterized based on Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, along with the calculation of molecular interactions between BPA and functional groups in DOM. It was found that the hydrogen bonding between DOM and BPA would be preferred over aromatic interactions. A pseudo-equilibrium molecular coordination model for the complexation between a BPA molecule and a hydroxyl group of the DOM was developed, which enabled estimation of the maximum sorption site and complex formation constant as well as prediction of organic complexes at various DOM levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号