首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Liu W  Chen S  Harada KH  Koizumi A 《Chemosphere》2011,85(11):1734-1741
Perfluorooctanoic acid (PFOA) has long been an environmental contaminant of concern owing to its potential health risk. However, exposure to perfluorinated carboxylic acids (PFCAs) other than PFOA is not well understood. In this study, we investigated the concentrations of PFCAs in vacuum cleaner dust in Japan to measure the PFCAs contamination in an indoor environment. Most of the 77 samples contained PFCAs with 6-13 carbon atoms. The median concentration of perfluorononanoic acid (PFNA, 23.2 ng g−1) was highest among PFCAs, followed by PFOA (20.8 ng g−1) and perfluoroundecanoic acid (PFUnDA, 12.9 ng g−1). The 90th percentile concentrations of PFNA, PFUnDA and perfluorotridecanoic acid (PFTrDA) were 948, 283 and 110 ng g−1, respectively, and these were detected at greater concentrations than neighboring, even-numbered PFCAs. The proportion of long-chain PFCAs in vacuum cleaner dust from Japan was relatively higher than those reported for other countries. Factor analysis showed three independent factors. Odd-numbered long chain PFCAs (PFNA, PFUnDA and PFTrDA), which can correspond to factor 1, were major components of PFCAs in vacuum cleaner dust. Short chain PFCAs (factor 2) and even numbered long chain PFCAs (factor 3) were also statistically separated. These findings suggest that there are several sources of PFCAs with different origins in indoor environment. Further investigations into the origins of PFCAs are needed to evaluate indoor contamination with PFCAs.  相似文献   

2.
Fujii Y  Yan J  Harada KH  Hitomi T  Yang H  Wang P  Koizumi A 《Chemosphere》2012,86(3):315-321
In this study, 90 human breast milk samples collected from Japan, Korea, and China were analyzed for perfluorooctanoic acid (PFOA) (C8), perfluorononanoic acid (PFNA) (C9), perfluorodecanoic acid (PFDA) (C10), perfluoroundecanoic acid (PFUnDA) (C11), perfluorododecanoic acid (PFDoDA) (C12), and perfluorotridecanoic acid (PFTrDA) (C13). In addition, infant formulas (n = 9) obtained from retail stores in China and Japan were analyzed. PFOA was the predominant compound and was detected in more than 60% of samples in all three countries. The PFOA, PFNA, PFDA, and PFUnDA levels in Japan were significantly higher than those in Korea and China (p < 0.05). The PFTrDA level was highest in Korea (p < 0.05). The median PFOA concentrations were 89 pg mL−1 (48% of total perfluorinated carboxylic acids (PFCAs) (C8-C13)) in Japan, 62 pg mL−1 (54%) in Korea, and 51 pg mL−1 (61%) in China. The remaining ∑PFCAs (C9-C13) were 95 pg mL−1 in Japan, 52 pg mL−1 in Korea, and 33 pg mL−1 in China. Among the long-chain PFCAs, odd-numbered PFCAs were more frequently detected than even-numbered PFCAs, except for PFDA in Japan. There were no evident correlations between the mother’s demographic factors and the PFCA concentrations. PFOA, PFNA, and PFDA were frequently detected in both Japan and China, but there were no significant differences between the two countries. The total PFCA concentrations in the infant formulas were lower than those in the breast milk samples in Japan (p < 0.05), but not in China (p > 0.05). In conclusion, various PFCAs were detected in human breast milk samples from East Asian countries.  相似文献   

3.
《Chemosphere》2012,86(11):1734-1741
Perfluorooctanoic acid (PFOA) has long been an environmental contaminant of concern owing to its potential health risk. However, exposure to perfluorinated carboxylic acids (PFCAs) other than PFOA is not well understood. In this study, we investigated the concentrations of PFCAs in vacuum cleaner dust in Japan to measure the PFCAs contamination in an indoor environment. Most of the 77 samples contained PFCAs with 6–13 carbon atoms. The median concentration of perfluorononanoic acid (PFNA, 23.2 ng g−1) was highest among PFCAs, followed by PFOA (20.8 ng g−1) and perfluoroundecanoic acid (PFUnDA, 12.9 ng g−1). The 90th percentile concentrations of PFNA, PFUnDA and perfluorotridecanoic acid (PFTrDA) were 948, 283 and 110 ng g−1, respectively, and these were detected at greater concentrations than neighboring, even-numbered PFCAs. The proportion of long-chain PFCAs in vacuum cleaner dust from Japan was relatively higher than those reported for other countries. Factor analysis showed three independent factors. Odd-numbered long chain PFCAs (PFNA, PFUnDA and PFTrDA), which can correspond to factor 1, were major components of PFCAs in vacuum cleaner dust. Short chain PFCAs (factor 2) and even numbered long chain PFCAs (factor 3) were also statistically separated. These findings suggest that there are several sources of PFCAs with different origins in indoor environment. Further investigations into the origins of PFCAs are needed to evaluate indoor contamination with PFCAs.  相似文献   

4.
This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L).  相似文献   

5.
The contribution of non-point sources to perfluorinated surfactants (PFSs) in a river was evaluated by estimating their fluxes and by using boron (B) as a tracer. The utility of PFSs/B as an indicator for evaluating the impact of non-point sources was demonstrated. River water samples were collected from the Iruma River, upstream of the intake of drinking water treatment plants in Tokyo, during dry weather and wet weather, and 13 PFSs, dissolved organic carbon (DOC), total nitrogen (TN), and B were analyzed. Perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUA), and perfluorododecanoate (PFDoDA) were detected on all sampling dates. The concentrations and fluxes of perfluorocarboxylates (PFCAs, e.g. PFOA and PFNA) were higher during wet weather, but those of perfluoroalkyl sulfonates (PFASs, e.g. PFHxS and PFOS) were not. The wet/dry ratios of PFSs/B (ratios of PFSs/B during wet weather to those during dry weather) agreed well with those of PFS fluxes (ratios of PFS fluxes during wet weather to those during dry weather), indicating that PFSs/B is useful for evaluating the contribution from non-point sources to PFSs in rivers. The wet/dry ratios of PFOA and PFNA were higher than those of other PFSs, DOC, and TN, showing that non-point sources contributed greatly to PFOA and PFNA in the water. This is the first study to use B as a wastewater tracer to estimate the contribution of non-point sources to PFSs in a river.  相似文献   

6.
Transport and fate of perfluoro- and polyfluoroalkyl substances (PFASs) in an urban water body that receives mainly urban runoff was investigated. Water, suspended solids, and sediment samples were collected during the monsoon (wet) and inter-monsoon (dry) season at different sites and depths. Samples were analyzed for C7 to C12 perfluoroalkyl carboxylate homologues (PFCAs) (PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA), perfluorohexane, perfluorooctane, and 6:2-fluorotelomer sulfonate (PFHxS, PFOS, and 6:2FtS, respectively), perfluorooctane sulfonamide (FOSA), N-ethyl FOSA (sulfluramid), N-ethyl sulfonamidoethanol (N-EtFOSE), and N-methyl and N-ethyl sulfonamidoacetic acid (N-EtFOSAA and N-MeFOSAA, respectively). Concentrations in wet samples were only slightly higher. The sum total PFAS (ΣPFAS) concentrations dissolved in the aqueous phase and sorbed to suspended solids (SS) ranged from 107 to 253 ng/L and 11 to 158 ng/L, respectively. PFOA, PFOS, PFNA, PFHxS, and PFDA contributed most (approximately 90 %) to the dissolved ΣPFASs. N-EtFOSA dominated the particulate PFAS burden in wet samples. K D values of PFOA and PFOS calculated from paired SS and water concentrations varied widely (1.4 to 13.7 and 1.9 to 98.9 for PFOA and PFOS, respectively). Field derived K D was significantly higher than laboratory K D suggesting hydrophobic PFASs sorbed to SS resist desorption. The ΣPFAS concentrations in the top sedimentary layer ranged from 8 to 42 μg/kg and indicated preferential accumulation of the strongly sorbing long-chain PFASs. The occurrence of the metabolites N-MeFOSAA, N-EtFOSAA and FOSA in the water column and sediments may have resulted from biological or photochemical transformations of perfluorooctane sulfonamide precursors while the absence of FOSA, N-EtFOSA and 6:2FtS in sediments was consistent with biotransformation.  相似文献   

7.
Perfluoroalkyl compounds (PFCs) are environmental toxicants that persistently accumulate in human blood. Their widespread detection and accumulation in the environment raise concerns about whether these chemicals might be developmental toxicants and teratogens in ecosystem. We evaluated and compared the toxicity of PFCs of containing various numbers of carbon atoms (C8–11 carbons) on vertebrate embryogenesis. We assessed the developmental toxicity and teratogenicity of various PFCs. The toxic effects on Xenopus embryos were evaluated using different methods. We measured teratogenic indices (TIs), and investigated the mechanisms underlying developmental toxicity and teratogenicity by measuring the expression of organ-specific biomarkers such as xPTB (liver), Nkx2.5 (heart), and Cyl18 (intestine). All PFCs that we tested were found to be developmental toxicants and teratogens. Their toxic effects were strengthened with increasing length of the fluorinated carbon chain. Furthermore, we produced evidence showing that perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFuDA) are more potent developmental toxicants and teratogens in an animal model compared to the other PFCs we evaluated [perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA)]. In particular, severe defects resulting from PFDA and PFuDA exposure were observed in the liver and heart, respectively, using whole mount in situ hybridization, real-time PCR, pathologic analysis of the heart, and dissection of the liver. Our studies suggest that most PFCs are developmental toxicants and teratogens, however, compounds that have higher numbers of carbons (i.e., PFDA and PFuDA) exert more potent effects.  相似文献   

8.
Song C  Chen P  Wang C  Zhu L 《Chemosphere》2012,86(8):853-859
Degradation of perfluorooctanoic acid (PFOA) is of great importance due to its global distribution, persistence and toxicity to bioorganisms. In present study, a composite TiO2 with multiple wall carbon nano-tubes (MWCNTs) was synthesized using sol-gel method and it was used as photocatalyst to degrade PFOA in water. The prepared composite catalyst displayed significant absorption in UV to visible light region. The loading content of TiO2 on MWCNTs could be adjusted by changing the ratio of precursor to MWCNTs. Due to the combined effect of the adsorption ability and e transport capacity of MWCNT, the composites displayed much higher photocatalytic ability to PFOA as compared to pure TiO2 under UV irradiation. The photocatalyst prepared with 10:1 of tetrabutyl titanate/MWCNT was the most effective. With the optimal dosage at 1.6 g L−1, almost 100% of PFOA was degraded in acid medium after irradiation for 8 h. It was proposed that PFOA were mainly degraded by stepwise losing a moiety of CF2.  相似文献   

9.
Perfluorinated compounds affect the function of sex hormone receptors   总被引:1,自引:0,他引:1  
Perfluorinated compounds (PFCs) are a large group of chemicals used in different industrial and commercial applications. Studies have suggested the potential of some PFCs to disrupt endocrine homeostasis, increasing the risk of adverse health effects. This study aimed to elucidate mechanisms behind PFC interference with steroid hormone receptor functions. Seven PFCs [perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA)] were analyzed in vitro for their potential to affect estrogen receptor (ER) and androgen receptor (AR) transactivity as well as aromatase enzyme activity. The PFCs were assessed as single compounds and in an equimolar mixture. PFHxS, PFOS and PFOA significantly induced the ER transactivity, whereas PFHxS, PFOS, PFOA, PFNA and PFDA significantly antagonized the AR activity in a concentration-dependent manner. Moreover, PFDA weakly decreased the aromatase activity at a high test concentration. A mixture effect more than additive was observed on AR function. We conclude that five of the seven PFCs possess the potential in vitro to interfere with the function of the ER and/or the AR. The observed mixture effect emphasizes the importance of considering the combined action of PFCs in future studies to assess related health risks.  相似文献   

10.
Time-series of perfluorinated alkylated substances (PFASs) in East Greenland polar bears and East and West Greenland ringed seals were updated in order to deduce whether a response to the major reduction in perfluoroalkyl production in the early 2000s had occurred. Previous studies had documented an exponential increase of perfluorooctane sulphonate (PFOS) in liver tissue from both species. In the present study, PFOS was still the far most dominant compound constituting 92% (West Greenland ringed seals), 88% (East Greenland ringed seals) and 85% (East Greenland polar bears). The PFOS concentrations increased up to 2006 with doubling times of approximately 6 years for the ringed seal populations and 14 years in case of polar bears. Since then a rapid decrease has occurred with clearing half-lives of approximately 1, 2 and 4 years, respectively. In polar bears perfluorohexane sulphonate (PFHxS) and perfluorooctane sulphonamide (PFOSA) also showed decreasing trends in recent years as do perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA). For the West Greenland ringed seal population perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), PFDA and PFUnA peaked in the mid 2000s, whereas PFNA, PFDA and PFUnA in the East Greenland population have been stable or increasing in recent years. The peak of PFASs in Greenland ringed seals and polar bears occurred at a later time than in Canadian seals and polar bears and considerably later than observed in seal species from more southern latitudes. We suggest that this could be explained by the distance to emission hot-spots and differences in long-range transport to the Arctic.  相似文献   

11.
Yang L  Zhu L  Liu Z 《Chemosphere》2011,83(6):806-814
The concentrations of four perfluorinated sulfonate acids (PFSAs) and 10 perfluorinated carboxylate acids (PFCAs) were measured in water and sediment samples from Liao River and Taihu Lake, China. In the water samples from Taihu Lake, PFOA and PFOS were the most detected perfluorinated compounds (PFCs); in Liao River, PFHxS was the predominant PFC followed by PFOA, while PFOS was only detected in two of the samples. This suggests that different PFC products are used in the two regions. PFOS and PFOA in both watersheds are at similar level as in the rivers of Japan, but significantly lower than in Great Lakes. The contributions of PFOS and long chain PFCAs in sediments were much higher than in water samples of both watersheds, indicating preferential partition of these PFCs in sediment. The concentrations of PFOS and PFOA were three orders of magnitude of lower than that of polycyclic aromatic hydrocarbons in the same sediments. The average sediment-water partition coefficients (log Koc) of PFHxS, PFOS and PFOA were determined to be 2.16, 2.88 and 2.28 respectively.  相似文献   

12.
Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC(50). Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups.  相似文献   

13.
Perfluorinated compounds in the Pearl River and Yangtze River of China   总被引:27,自引:0,他引:27  
A total of 14 perfluorinated compounds (PFCs) were quantified in river water samples collected from tributaries of the Pearl River (Guangzhou Province, south China) and the Yangtze River (central China). Among the PFCs analyzed, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the two compounds with the highest concentrations. PFOS concentrations ranged from 0.90 to 99 ng/l and <0.01–14 ng/l in samples from the Pearl River and Yangtze River, respectively; whereas those for PFOA ranged from 0.85 to 13 ng/l and 2.0–260 ng/l. Lower concentrations were measured for perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctanesulfoamide (PFOSA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorononaoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA). Concentrations of several perfluorocarboxylic acids, including perfluorododecanoic acid (PFDoDA), perfluorotetradecanoic acid (PFTeDA), perfluorohexadecanoic acid (PFHxDA) and perfluorooctadecanoic acid (PFOcDA) were lower than the limits of quantification in all the samples analyzed. The highest concentrations of most PFCs were observed in water samples from the Yangtze River near Shanghai, the major industrial and financial centre in China. In addition, sampling locations in the lower reaches of the Yangtze River with a reduced flow rate might serve as a final sink for contaminants from the upstream river runoffs. Generally, PFOS was the dominant PFC found in samples from the Pearl River, while PFOA was the predominant PFC in water from the Yangtze River. Specifically, a considerable amount of PFBS (22.9–26.1% of total PFC analyzed) was measured in water collected near Nanjing, which indicates the presence of potential sources of PFBS in this part of China. Completely different PFC composition profiles were observed for samples from the Pearl River and the Yangtze River. This indicates the presence of dissimilar sources in these two regions.  相似文献   

14.
Zushi Y  Takeda T  Masunaga S 《Chemosphere》2008,71(8):1566-1573
Products containing perfluorinated compounds (PFCs) have been widely used during the last 50 years. As a result, worldwide environmental pollution by PFCs has been reported. The sources of PFC pollution in the aquatic environment have been poorly understood. In this study, river water and sewage treatment plant (STP) effluent were sampled along the stretch of the Tsurumi River and also at a fixed station in the river. The concentrations of perfluorooctanesulfonate (PFOS), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were measured. With an increase in river flow rate, it was observed that the PFC concentrations in the river water at fixed station were remained the same or increased for PFOS (179.9+/-34.4-179.6+/-69.5 ng l(-1)), PFHxA (5.5+/-0.8-9.0+/-2.6 ng l(-1)), PFHpA (3.1+/-0.3-4.4+/-1.0 ng l(-1)), and PFOA (15.9+/-0.3-13.4+/-2.5 ng l(-1)) whereas the concentration of PFNA (38.0+/-3.3-15.4+/-3.0 ng l(-1)) and PFDA (3.9+/-0.3-2.1+/-0.3 ng l(-1)) were decreased. On the other hand, the loads of every PFC increased with an increase in river flow rate. The loads of PFCs in rain runoff were estimated to be 2-11 times greater than those in STP effluents that are discharged into the river. These results indicate the existence of a PFC nonpoint source (NPS) and its impact to the total PFC load of river is significant.  相似文献   

15.

Herein improved solar light–driven photocatalytic degradation and mineralization of two emerging pollutants as well as recalcitrant beta blockers propranolol (PR) and atenolol (AT) have been demonstrated by metal-free carbon dot/TiO2 (CDT) composite. Hydrothermally synthesized TiO2 has been decorated with electrochemically synthesized carbon dots (CDs) and was well characterized by various analytical techniques viz. XRD, FTIR, Raman, XPS, UV–visible DRS, FESEM, and TEM. The optimized CDT composite, 2CDT (2 mL carbon dot/TiO2), showed?~?3.45- and?~?1.75-fold enhancement in the photodegradation rate as compared to pristine TiO2 for PR and AT respectively in 1 hour of irradiation along with complete degradation of PR and AT after 3 hours of irradiation. 2CDT exhibited 76% and 80% mineralization of PR and AT in contrast with 62% and 47% observed by pristine TiO2. Further, the major reaction intermediates formed after degradation have been identified by HPLC/MS analysis, confirming more than 99% reduction of the parent compound for both PR and AT. Reusability of the optimized catalyst also showed successful degradation up to 3 cycles, showing reduction abilities of 97%, 95%, and 94% for 1st, 2nd, and 3rd cycle respectively. The enhanced degradation and mineralization efficiency of the 2CDT composite could be attributed to the excellent photosensitizer and electron reservoir properties of the CD along with upconverted photoluminescence behavior. The present study unlocks the possibility of using metal-free, facile CDT composite for effective degradation and mineralization of widely used beta blockers and other pharmaceuticals.

  相似文献   

16.
In this study, we analyzed over 30 types of PFCs, including precursors in both the dissolved phase and particle solid phase, in 50 samples of river water collected from throughout the Tokyo Bay basin. PFCs were detected in suspended solids (SSs) at levels ranging from <0.003-4.4 ng L(-1) (0.11-2470 ng g(-1) dry weight). The concentrations of PFCs in the SS were one to two order(s) of magnitude lower than those of PFCs in the dissolved phase. Relatively high levels of PFCs (total of 35 PFCs) in SS were observed in urbanized areas. The concentration of PFCAs, including PFOA and PFNA, were significantly correlated with the geographic index as artificial area (R(2) of the linear regression curve in a double logarithmic plot: 0.09-0.55). Conversely, PFOS and FOSA were significantly correlated with the arterial traffic area (R(2) in a double logarithmic plot: 0.29-0.55). Those spatial trends were similar to the trends in dissolved PFCs. We estimated the loading amount of PFCs into Tokyo Bay from six main rivers and found that more than 90% of the total PFCs reached Tokyo Bay in the dissolved phase. However, 40.0-83.5% of the long chain PFCAs (C12-C15), were transported as particle sorbed PFCs. Rain runoff events might increase the loading amount of PFCs in SS. Overall, the results presented herein indicate that greater attention should be given to PFCs, especially for longer chain PFCs in SS in addition to dissolved PFCs.  相似文献   

17.
Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands   总被引:1,自引:1,他引:0  
Diet and drinking water are suggested to be major exposure pathways for perfluoroalkyl substances (PFASs). In this study, food items and water from Faroe Islands sampled in 2011/2012 were analyzed for 11 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkane sulfonic acids (PFSAs). The food samples included milk, yoghurt, crème fraiche, potatoes, fish, and fish feed, and the water samples included surface water and purified drinking water. In total, nine PFCAs and four PFSAs were detected. Generally, the levels of PFAS were in the lower picogram per gram range. Perfluorobutanoic acid was a major contributor to the total PFASs concentration in water samples and had a mean concentration of 750 pg/L. Perfluoroundecanoic acid (PFUnDA) was predominating in milk and wild fish with mean concentrations of 170 pg/g. Perfluorooctane sulfonic acid (PFOS) was most frequently detected in food items followed by PFUnDA, perfluorononanoic acid, and perfluorooctanoic acid (PFOA). Levels of PFUnDA and PFOA exceeded those of PFOS in milk and fish samples. Prevalence of long-chain PFCAs in Faroese food items and water is confirming earlier observations of their increase in Arctic biota. Predominance of short-chain and long-chain homologues indicates exposure from PFOS and PFOA replacement compounds.  相似文献   

18.
Perfluorinated carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), are persistent organic pollutants that pose human health risks. However, sources of contamination and exposure pathways of PFCAs have not been explored. In this study, PFCA concentrations were quantified in personal care products. Among 24 samples that listed fluorinated compounds, such as polyfluoroalkyl phosphate esters (PAPs), in their international nomenclature of cosmetic ingredients (INCI) labels, 21contained PFCAs (13 of 15 cosmetic samples, and 8 of 9 sunscreen samples). The concentrations of total PFCAs ranged from not detected to 5.9 μg g−1 for cosmetics and from not detected to 19 μg g−1 for sunscreens. We also investigated components of PFCAs in cosmetics and sunscreens. Commercially available compounding agents, mica and talc, which were treated with PAPs were analyzed and high concentrations of PFCAs were detected (total PFCAs 2.5 μg g−1 for talc treated with PAPs, 35.0 μg g−1 for mica treated with PAPs). To the best of our knowledge, this is the first report on contamination of end consumer products containing PAPs with high concentrations of PFCAs.  相似文献   

19.
Pinna MV  Pusino A 《Chemosphere》2012,86(6):655-658
The photodegradation of two quinolinecarboxylic herbicides, 7-chloro-3-methylquinoline-8-carboxylic acid (QMe) and 3,7-dichloroquinoline-8-carboxylic acid (QCl), was studied in aqueous solution at different irradiation wavelengths. The effect of sunlight irradiation was investigated also in the presence of titanium dioxide (TiO2). UV irradiation degraded rapidly QMe affording 7-chloro-3-methylquinoline (MeQ) through a decarboxylation reaction. The reaction rate was lower in the presence of dissolved organic carbon (DOC) because of the adsorption of the herbicide on the organic components. Instead, QCl was stable under both UV light and sunlight irradiation. The irradiation of QMe or QCl solutions with simulated sunlight in the presence of TiO2 produced the complete mineralization of the two herbicides.  相似文献   

20.
Chen HY  Liao W  Wu BZ  Nian H  Chiu K  Yak HK 《Chemosphere》2012,89(2):179-184
The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from solid matrices has received considerable attention because of the environmental persistence, bioaccumulation, and potential toxicity of these compounds. This study presents a simple method using concentrated HNO3 as a suppression agent, and methanol-modified supercritical carbon dioxide (Sc-CO2) extraction for removing PFOS and PFOA from solid matrices. The optimal conditions were 16 M HNO3 and 20% (v/v) methanol containing Sc-CO2, under a pressure of 20.3 MPa and a temperature of 50 °C. Extraction time was set at 70 min (40 min for static and 30 min for dynamic extraction). PFOA and PFOS were identified and quantitated by liquid chromatography/mass spectrometry. The extraction efficiencies (with double extractions) were close to 100% for PFOA and 80% for PFOS for both paper and fabric matrices. The extraction efficiencies for sand were approximately 77% for PFOA and 59% for PFOS. The results show that this method is accurate, and effective, and that it provides a promising and convenient approach to remediate the environment of hazardous PFOA and PFOS contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号