首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Chabukdhara M  Nema AK 《Chemosphere》2012,87(8):945-953
The aim of this study was to assess the level of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface sediments of the Hindon River, India that receives both treated and untreated municipal and industrial discharges generated in and around Ghaziabad, India. Mean metals concentrations (mg kg−1) were in the range of; Cu: 21.70-280.33, Cd: 0.29-6.29, Fe: 4151.75-17318.75, Zn: 22.22.50-288.29, Ni: 13.90-57.66, Mn: 49.55-516.97, Cr: 17.48-33.70 and Pb: 27.56-313.57 respectively. Chemometric analysis was applied to identify contribution sources by heavy metals while geochemical approaches (enrichment factor and geo-accumulation index) were exploited for the assessment of the enrichment and contamination level of heavy metals in the river sediments. Chemometric analysis suggested anthropic origin of Cu, Cd, Pb, Zn, and Ni while Fe showed lithogenic origin. Mn and Cr was associated and controlled by mixed origin. Geochemical approach confirms the anthropogenic influence of heavy metal pollution in the river sediments. The study suggests that a complementary approach that integrates chemometric analysis, sediment quality criteria, and geochemical investigation should be considered in order to provide a more accurate appraisal of the heavy metal pollution in river sediments. Consequently, it may serve to undertake and design effective strategies and remedial measures to prevent further deterioration of the river ecosystem in future.  相似文献   

2.
The concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and organic carbon in surface sediments, collected from the southern Bohai Bay, were determined to assess the potential contamination and determine the environmental risks associated with heavy metals. Results showed that heavy metal concentrations in the sediments generally met the China Marine Sediment Quality criteria. Both the ecotoxicological index and the potential ecological risk index suggest that the combined ecological risk of the six studied metals may be low, with the highest ecotoxicological potential zones located in the offshore area. The methods of enrichment factor and geoaccumulation index suggested that elevated concentrations of Cd, Cr, and Ni are presented in the region. Multivariate analysis also indicated that the lithogenic factor dominates the distribution of most part of the considered metals in the study area, whereas Cd and Cr are clearly influenced by anthropogenic inputs. The results of this study are likely to be a useful tool to authorities in charge of sustainable marine management.  相似文献   

3.
We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn?>?Ni?>?Cr?>?Cu?>?Cd?>?Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.  相似文献   

4.
Concentrations of Fe, Mn, Zn, Cu, Pb, Ni, Cd and Co were determined in surface and core sediments collected from Manila Bay and in surface sediments from inflowing rivers. Core profiles revealed highly fluctuating and enriched Pb, Cd, Zn and Cu concentrations on the surface, suggestive of recent inputs coming from anthropogenic sources. Concentrations of Pb, Zn, and to a lesser extent Cu and Cd were higher in riverine sediments as compared with marine sediments, which may be attributed to the proximity of these riverine sites to pollutant sources. Comparison of metal concentration levels obtained with other areas in the world revealed elevated values for Pb and Cd, indicating a considerable amount of pollution in the area. Continuous monitoring and further studies of the area are recommended to ascertain long-term effects that may have not yet been reached.  相似文献   

5.
Seven sediment cores (60-80 cm) were collected at Chiricahueto marsh, a salt marsh influenced by agrochemical, domestic and industrial effluents. The concentrations of Ag, Al, Cd, Co, Cu, Fe, Li, Mn, Pb, V and Zn were studied in the solid phase at each 1-cm section. The profiles of Ag, Cd, Cu, Mn, Ni, Pb and Zn showed a slight recent pollution in the site with enrichment and anthropogenic factors higher than unity; and correlation analysis indicated a direct association with organic carbon. Al, Co, Cr, Fe, Li, and V concentration profiles displayed a negative correlation with organic C and positive with mud content and no consistent enrichment at surface. Based on the principal component analysis and correlation analysis, two principal groups of metals were identified. The first group includes Al, Co, Cr, Fe and Li, that are derived predominantly from the weathering of parent materials in the local bedrock; and the second group include most of the metals, which were relatively enriched at surficial sediments, that are produced mainly by anthropogenic activities such as agriculture (Cd, Cu and Zn), sewage effluents (Ag, Cd, Cu, Ni, Pb and Zn) and in lesser extent atmospheric deposition (Cd and Pb).  相似文献   

6.
Metal (Cu, Zn, Pb, Cd, Ni, Co, and Fe) contamination in sediments from a tropical estuary (Ébrié Lagoon, Ivory Coast) was assessed using pollution indices, multivariate analyses and sediment quality guidelines (SQGs). The results demonstrate that increased input of the studied metals occurred over the past 6 years compared to that from 20 years ago, due to rapid population growth, along with the increase of industrial and agricultural activities in the vicinity of the estuary. Ébrié Lagoon was also found to be one of the most contaminated tropical coastal estuaries. Very high average total organic carbon (TOC) content was found (1.9–3.70%) with significant spatial variation as a result of the influence of anthropogenic activities. This study also found that TOC plays an important role in the distribution of Cu, Zn, Co, and Cd in the Ébrié Lagoon sediments. Moderate to high sediment contamination was observed for Cd and Cu, moderate contamination was observed for Zn and Pb, while low contamination was observed for Ni, Co, and Fe. Cluster analysis (CA) and principal component analysis (PCA) investigation revealed that Cu, Zn, Cd, and Co result mainly from anthropogenic sources while Pb, Ni, and Fe may be of natural origin. The pollution-loading index (PLI) indicated that all of the sites close to wastewater discharges were highly polluted. The sediments are likely to be an occasional threat to aquatic organisms due to Cu, Zn, Pb, Cd, and Ni contents, based on the SQGs approach.  相似文献   

7.
Samples of Townsville Harbor bottom mud were acid leached (0.3 m HCl) to measure bioavailability of Cd, Co, Cu, Fe, Mn, Ni, Pb, Sn and Zn. Three of seven samples showed enrichment factors relative to average soil of 25-30 for Cd, 5-71 for Cu, 21-81 for Pb, and 13-37 for Zn. The other four samples were only high in Cd, Pb, and Zn by an enrichment factor of 2-7. Considering that this harbor is in the middle of the environmentally sensitive Great Barrier Reef area, the disposal of the dredged harbor muds poses a special problem.  相似文献   

8.
The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.  相似文献   

9.
天津市典型河网区沉积物中重金属分布及生态风险评价   总被引:3,自引:0,他引:3  
选择天津市典型河网区为研究对象,分析了沉积物中6种重金属(Cr、Cu、Mn、Ni、Pb和Zn)的分布特征,并采用富集系数法和潜在生态危害指数法分析了重金属的来源,进而评价了其生态风险。结果表明,表层沉积物中Cr、Cu、Mn、Ni、Pb和Zn的平均含量分别是58.18、23.52、524.60、22.93、25.24和49.51 mg/kg,其中Cr、Mn和Ni含量均低于天津市土壤背景值,而Cu、Pb和Zn含量在部分样点高于背景值;在垂直分布上,沉积物中Cr和Ni的含量相对稳定,而Cu、Mn、Pb和Zn的含量从底层到表层均先增加后降低。重金属富集系数(EF)分析显示,河网区表层沉积物中Cu和Zn在个别样点以及Pb在近一半样点存在人为输入过程(EF1.5),与接纳上游及区域的生活污水、农田退水有关,而Cr、Mn和Ni均来自自然源。重金属综合潜在生态危害指数(RI)评价表明,整个河网区表层沉积物为轻微生态危害水平,对区域的水环境质量不构成威胁。  相似文献   

10.
11.
The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206Pb/207Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary.  相似文献   

12.
Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the soft tissue of Crassostrea iridescens and the associated surface sediments (bulk and bioavailable metal concentrations) from an area influenced by a sewage outfall in Mazatlán Bay (southeast Gulf of California), were determined by atomic absorption spectrophotometry. Significant spatial differences in metal concentrations in both the bulk and bioavailable forms in the sediments were identified. An enrichment of Cu, Ni, Pb and Zn in sites located on a south-north transect was detected indicating a dominant influence of the sewage outfall toward the north. C. iridescens accumulated more Zn, Cu, Ni, Fe, Cd; and less Mn, Cr and Pb than were bioavailable in the sediments, as measured using conventional extraction analysis. The degree of enrichment and the bioavailable metal concentrations in the sediments of the south portion of Mazatlán Bay is discussed. The potential ability of C. iridescens as a biomonitor of metallic pollutants is postulated.  相似文献   

13.
Loska K  Wiechuła D 《Chemosphere》2003,51(8):723-733
The concentrations of metals, loss of ignition and nutrient (N, P) were determined in the bottom sediments of the Rybnik Reservoir (southern Poland). The mean concentrations of the metals in the bottom sediments were: Cd 25.8 microgram/g, Cu 451.7 microgram/g, Zn 1583.4 microgram/g, Ni 71.1 microgram/g, Pb 118.6 microgram/g, Cr 129.8 microgram/g, Fe 38782 microgram/g and Mn 2018.7 microgram/g. The bottom sediments are very heavily loaded with zinc, manganese, copper, nickel, phosphorus and lead (percentage enrichment factor), and cadmium, phosphorus and zinc (index of geoaccumulation). The increase of cadmium, lead, nickel and zinc concentrations was connected with the inflow of the contaminated water of the river Ruda and long-range transport. The contamination of the reservoir with copper and manganese resulted mainly from atmospheric precipitation. The variability of the bottom sediment loading with metals during the investigations was affected in the first place by changes in the concentration of iron, but also those elements whose concentrations in the bottom sediment were elevated compared to the concentrations in shale--cadmium, nickel and lead.  相似文献   

14.
Wang X  Sato T  Xing B 《Chemosphere》2006,65(11):2440-2448
Aerosol samples were collected from Kanazawa, Japan to examine the size distribution of 12 elements and to identify the major sources of anthropogenic elements. Key emission sources were identified and, concentrations contributed from individual sources were estimated as well. Concentrations of elements V, Ca, Cd, Fe, Ba, Mg, Mn, Pb, Sr, Zn, Co and Cu in aerosols were determined with ICP-MS. The results showed that Ca, Mg, Sr, Mn, Co and Fe were mainly associated with coarse particles (>2.1 μm), primarily from natural sources. In contrast, the elements Zn, Ba, Cd, V, Pb and Cu dominated in fine aerosol particles (<2.1 μm), implying that the anthropogenic origin is the dominant source. Results of the factor analysis on elements with high EFCrust values (>10) showed that emissions from waste combustion in incinerators, oil combustion (involving waste oil burning and oil combustion in both incinerators and electricity generation plants), as well as coal combustion in electricity generation plants were major contributors of anthropogenic metals in the ambient atmosphere in Kanazawa. Quantitatively estimated sum of mean concentrations of anthropogenic elements from the key sources were in good agreement with the observed values. Results of this study elucidate the need for making pollution control strategy in this area.  相似文献   

15.
Yu GB  Liu Y  Yu S  Wu SC  Leung AO  Luo XS  Xu B  Li HB  Wong MH 《Chemosphere》2011,85(6):1080-1087
Numerous indices have been developed to assess environmental risk of heavy metals in surface sediments, including the total content based geoaccumulation index (Igeo), exchangeable fraction based risk assessment code (RAC), and biological toxicity test based sediment quality guidelines (SQGs). In this study, the three indices were applied to freshwater surface sediments from 10 sections along an urbanization gradient of the Grand Canal, China to assess the environmental risks of heavy metals (Cu, Pb, Zn, Cd, and Cr) and to understand discrepancies of risk assessment indices and urbanization effects regarding heavy metal contamination. Results showed that Cd, Zn, and Pb were the most enriched metals in urban sections assessed by Igeo and over 95% of the samples exceeded the Zn and Pb thresholds of the effect range low (ERL) of SQGs. According to RAC, Cu, Zn, Cd, and Cr had high risks of adversely affecting the water quality of the Grand Canal due to their remarkable portions of exchangeable fraction in surface sediment. However, Pb showed a relative low risk, and was largely bounded to Fe/Mn oxides in the urban surface sediments. Obviously, the three assessment indices were not consistent with each other in terms of predicting environmental risks attributed to heavy metals in the freshwater surface sediments of this study. It is recommended that risk assessment by SQGs should be revised according to availability and site specificity. However, the combination of the three indices gave us a comprehensive understanding of heavy metal risks in the urban surface sediments of the Grand Canal.  相似文献   

16.

Trace element pollution in rivers by anthropogenic activities is an increasing problem worldwide. In this study, the contamination and ecological risk by several trace elements were evaluated along a 100-km stretch of the San Jorge River in Colombia, impacted by different mining activities. The increase of average concentration levels and range of trace elements in sediments (in μg/g) was as follows: Cu 6656 (454–69,702) > Cd 1159 (0.061–16,227) > Zn 1064 (102–13,483) > Ni 105 (31–686) > Pb 7.2 (5.1–11.7) > As 1.8 (1.0–3.2) > Hg 0.31 (0.12–1.37). Results showed that surface sediments could be classified as very high ecological risk index (RI > 600), associated with high contamination of Hg, Cd, and Cu, in stations close mining activities. Values for pollution load index indicate an environmental deterioration (PLI > 1), and sediment quality guidelines (SQGs) suggested that Cu, Ni, Zn, and Hg caused adverse biological effects. We further used pollution indices such as contamination factor (CF), enrichment factor (EF), and geoaccumulation index (Igeo) to assess the extent of contamination. According to these indices, discharges of hazardous chemicals over many years have resulted in a high degree of pollution for Cu, Pb, and Cd, with critical values in stations receiving wastes from mining activities. Multivariate statistical analysis suggested that Hg, Cd, Cu, and Zn derived from gold and coal mining, Ni and As were related from the mining of ferronickel and coal, respectively, whereas the high Pb load was attributed to diffuse source of pollution. In sum, our study provided the first detailed database on metal concentration and ecological risks to organisms in sediments of the San Jorge River Basin, and the current results also suggested future research for public health action.

  相似文献   

17.
Heavy metals in the surface soils from lands of six different use types in one of the world’s most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma–mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2?×?104 km2) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas?>?waste disposal/treatment sites?~?industrial areas?>?agricultural lands?~?forest lands?>?water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.  相似文献   

18.
Karadede H  Unlü E 《Chemosphere》2000,41(9):1371-1376
Concentrations of heavy metals (Cd, Co, Cu, Fe, Hg, Mn, Mo, Ni, Pb and Zn) were measured in the water, sediment and fish species (Acanthobrama marmid, Chalcalburnus mossulensis, Chondrostoma regium, Carasobarbus luteus, Capoetta trutta and Cyprinus carpio) from the Atatürk Dam Lake, Turkey. Among the heavy metals studied Cd, Co, Hg, Mo and Pb were not detected in water, sediments and fish samples, while Ni was undetectable levels in fish samples. Levels of Cu, Fe, Mn and Zn varied depending on different tissues. The results of this study indicated that a general absence of serious pollution in the dam lake is due to heavy metals, where as the concentrations of elements found could mainly be attributed to geological sources.  相似文献   

19.
Superficial and cored sediment samples from the Moulay Bousselham lagoon and sub-watershed were analyzed for Al, Fe, Cu, Zn, Pb, Mn, Ni, Cr, As, Hg, and Cd. The temporal and spatial distributions of the main contamination sources of heavy metals were identified and described using chemometric and geographic information system (GIS) methods. Sediments from coastal lagoons near urban and agricultural areas are commonly contaminated with heavy metals, and the concentrations found in surface sediments are significantly higher than those from 50–100 years ago. The concentrations of these elements decrease sharply with depth in the sediment column, and the elements are preferentially enriched in the <2-μm-sized fraction of the sediment. The zones of enhanced risk of heavy metals were detected by means of GIS-based geostatistical modeling. According to sediment pollution indices and statistical analysis, heavy metals (Pb, Cu, Ni, Zn, Cr, and Hg) that pose a risk have become largely enriched in the lagoon sediments during the recent period of agricultural intensification.  相似文献   

20.
Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO(3), organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO(3) indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号